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Preface

This book contains the papers accepted for presentation at the 2011 edition of the
Adaptive and Learning Agents (ALA) workshop. ALA is the result of the merger
of the ALAMAS and ALAg workshops. ALAMAS was an annual European work-
shop on Adaptive and Learning Agents and Multi-Agent Systems, held eight times.
ALAg was the international workshop on Adaptive and Learning agents, typically
held in conjunction with AAMAS. To increase the strength, visibility, and quality of
the workshops, ALAMAS and ALAg were combined into the ALA workshop, and a
steering committee was appointed to guide its development.

The goal of the workshop is to increase awareness and interest in adaptive agent re-
search, encourage collaboration, and give a representative overview of current research
in the area of adaptive and learning agents. It aims at bringing together not only
different areas of computer science (e.g., agent architectures, reinforcement learning,
and evolutionary algorithms) but also from different fields studying similar concepts
(e.g., game theory, bio-inspired control, and mechanism design). The workshop serves
as an inclusive forum for the discussion of ongoing or completed work in adaptive and
learning agents and multi-agent systems.

Organizing an event such as ALA would not be possible without the efforts and
contributions of many motivated people. We would like to thank all authors who
responded to our call-for-papers. We expect that the workshop will be both lively
and informative, and will aid participants in refining and further developing their
research. We are also thankful to the members of the program committee for their
high quality reviews, which ensured the strong scientific content of the workshop.
Finally, we would like to thank the members of the ALA steering committee for
their guidance, and the AAMAS conference for providing an excellent venue for our
workshop.

Peter Vrancx, Matt Knudson and Marek Grześ
ALA 2011 Co-Chairs
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Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowé
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ABSTRACT
Agents in reinforcement learning tasks may learn slowly in large
or complex tasks — transfer learning is one technique to speed up
learning by providing an informative prior. How to best enable
transfer between tasks with different state representations and/or
actions is currently an open question. This paper introduces the
concept of a common task subspace, which is used to autonomously
learn how two tasks are related. Experiments in two different non-
linear domains empirically show that a learned inter-state mapping
can successfully be used by fitted value iteration, to (1) improving
the performance of a policy learned with a fixed number of sam-
ples, and (2) reducing the time required to converge to a (near-)
optimal policy with unlimited samples.

Categories and Subject Descriptors
I.1.2 [Algorithms]: Design and Analysis

General Terms
Transfer Learning

Keywords
Transfer Learning, Reinforcement Learning, Common Task-Subspace,
Inter-State mapping

1. INTRODUCTION
Reinforcement learning [9] (RL) is a popular framework that al-

lows agents to learn how to solve complex sequential-action tasks
with minimal feedback. Unfortunately, amount of experience or
time required for an RL agent to learn a high-quality policy may
grow exponentially with the number of dimensions in the input
(state) or output (action) space. Transfer learning [10] (TL) at-
tempts to decrease the amount of time or data required for learning
a complex (target) task by providing an informative prior, learned
on a simpler (source) task.

At a high level, there are two types of algorithms for TL in RL
tasks. The first broad category of algorithms transfer high-level
knowledge, such as partial policies, rules, advice, or important fea-
tures for learning. The second is to transfer low-level knowledge,
such as action-value functions or individual state transition data.
Our approach deals with the transfer of suggested state/action pairs
between different, but related, tasks.

As discussed later in Section 3.4, the source task can potentially
differ from the target task in many ways. If the tasks have differ-
ent representations of state or action spaces, some type of mapping
∗The author is also affiliated with the Instituite of Neural Informa-
tion Processing at the Ulm University, Germany.

between the tasks is required. While there have been a number of
successes in using such a mapping, it typically is hand-coded, and
may require substantial human knowledge [13, 10]. This paper in-
troduces a novel construct, a common task subspace, and shows that
1) an inter-state mapping can be learned, provided such a subspace
through task state transition mappings, and 2) this inter-state map-
ping can significantly improve learning by transferring state/action
data from one task to another based on the similarity of transitions
in both tasks.

This paper provides a proof-of-concept for our method, using
fitted value iteration with locally weighted regression in two ex-
periments. The first experiment shows successful transfer from a
single mass system into a double mass system. The second exper-
iment uses a policy learned on the simple inverted pendulum task
to improve learning on the cartpole swing-up problem. Our results
show:

1. an inter-state mapping can be learned from data collected in
the source and target tasks;

2. this inter-state mapping can effectively transfer information
from a source task to a target task, even if the state represen-
tations and actions differ;

3. an agent that uses transferred information can learn a higher
quality policy in the target task, relative to not using this in-
formation, when keeping the number of samples in the target
task fixed; and

4. an agent using information transferred from a source task can
learn an optimal policy faster in the target task, relative to not
using this information, when it has access to an unlimited
number of target task samples.

The rest of the paper proceeds as follows. Related work is pre-
sented next, in Section 2. Background information is presented in
Section 3. Section 4 describes how an inter-state mapping can be
learned between two tasks by leveraging a distance-minimization
algorithm. In Section 5, we show how the learned mapping can be
used to transfer information between a source task and target task.
Experiments in Section 6 evaluate the entire system on two pairs of
tasks. Section 7 concludes with a discussion of future work.

2. RELATED WORK
There has been a significant amount of work done in recent years

on transfer learning in RL domains [10]. This section outlines the
most related work (summarized in three classes) and contrast it with
this paper.

The first class of papers, providing motivation for this work, fo-
cus on using a hand-coded mapping between tasks with different
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state variables and actions. For instance, [13] transfers advice, and
[11] transfers Q-values — both methods assume that a mapping
between the state and action variables in the two tasks has been
provided. Another approach is to frame different tasks as having
a shared agent space [5], so that no mapping is explicitly needed,
but this requires the agent acting in both tasks to share the same
actions and the human must map new sensors back into the agent
space. The primary contrast with these authors’ work and ours is
that we are interested in learning a mapping between states and ac-
tions in pairs of tasks, rather than assuming that it is provided or
unnecessary.

The second approach is to assume that a mapping between tasks
is not known, but that a high-level analysis can discover this map-
ping. For instance, [7] assume that a quantitative dynamic Bayes
network has been provided for each task. Their work uses a graph
mapping technique to efficiently find a mapping between tasks.
Other work [6] analyzes full information games, and shows that
information can be transferred between games by analyzing rule
graphs constructed from the (known) transition function. In both
cases, no data needs to be sampled from the environment, as the
transition function can be analyzed (in terms of a network or rule
graph, respectively). Our methods, rather than relying on analysis
of the Markov Decision Processes (MDPs), instead are data-driven
methods, using supervised learning techniques to find an accurate
mapping.

A third approach involves learning a mapping between tasks us-
ing data gathered while agents interact with the environment. [8]
supply an agent with a series of possible state transformations and a
description of how actions are related in a pair of tasks. Over time
the agent can learn the correct mapping by balancing exploration
of the different transformations and exploiting the transformation
thought to be best. In contrast to this method, our framework does
not assume that the agent knows how the actions are related be-
tween the two tasks, nor does it rely on finding the correct mapping
via exploration. Other work [12] learns both the state and action
mapping simultaneously by gathering data in both the source task
and the target task. They then use a classifier to find the most con-
sistent mapping. However, this approach is computationally expen-
sive and scales exponentially with the number of state variables and
actions in the two tasks. In contrast, our approach will scale much
better with higher dimensional tasks, assuming that a smaller task
specific subspace can be found.

Finally, unlike all other existing methods (to the best of our knowl-
edge), we assume differences among all the variables of MDPs
describing the tasks and focus on learning an inter-state mapping,
rather than a state-variable mapping. Our framework can also map
different actions depending on the state. For instance, it could be
that in some parts of the target task, action a1,target in the target
task is most similar to action a1,source in the source task, while
in other parts of the target task, action a1,target is most similar
to action a2,source. Since our framework relies on state transition
similarities in both the target and source task, then it allows such a
flexibility for the action choices in certain regions of the state space,
while other existing algorithms do not.

3. BACKGROUND
This section provides the reader with a short background in rein-

forcement learning, transfer learning, locally weighted regression
for function approximation and the learning methods used in this
paper.

3.1 Reinforcement Learning

In an RL problem, an agent must decide how to sequentially se-
lect actions in order to maximize its long term expected reward [9].
Such problems are typically formalized as Markov decision pro-
cesses (MDPs). An MDP is defined by 〈S,A, P,R, γ〉, where S
is the (potentially infinite) set of states, A is the set of all possible
actions that the agent may execute, P : S × A → S is a state
transition probability function describing the transition dynamics,
R : S → R is the reward function measuring the performance of
the agent, and γ ∈ [0, 1) is the discount factor. A policy π : S → A
is defined as a mapping from a state to an action. The goal of an
RL agent is to improve its policy, potentially reaching the optimal
policy π∗ that maximizes the discounted total long term reward:

V ∗(s) = max
π

E

[ ∞∑

t=0

γtR(st)|s = s0,π

]

3.2 Fitted Value Iteration
When operating in a continuous state space, the value function

cannot be enumerated in a table [3]. Instead, some sort of function
approximation must be used. The fitted value iteration (FVI) algo-
rithm [3], as shown in Algorithm 1, is one approach to the problem
of approximating a continuous function. The key idea of FVI is
to approximate the value function after sampling a finite number
of states using a parametric or nonparametric combination of some
feature vector of the states. The value function, estimating the long-
term value of a state, is

V (s) = ΨTΦ(s) (1)

where ΨT is a vector of parameters to be fitted and Φ(s) is an ap-
propriate feature vector mapping of the states. For each state in the
finite sample and for each action a ∈ A, Algorithm 1 determines
a quantity y(i) which is an approximation of the value function.
Then it solves a linear regression problem to fit the Ψ values mak-
ing V (s) as close as possible to y(i).1

3.3 Locally Weighted Regression
Locally weighted regression [1] (LWR) is a supervised learning

algorithm used in function approximation where local models are
fitted near query points. LWR is a lazy or memory-based learning
method, where generalization is delayed until a query is made. In
LWR, a weighted least squares criteria is used to fit local models.
Such an approximation method is suited to our problem because
state-action pairs are collected offline, as described in Section 5.1.

3.4 Transfer Learning in RL Tasks
In transfer learning, there typically exists a source and a target

task, where the goal is to increase the performance and to reduce
the learning times in the target task agent [10]. This is done by al-
lowing an agent in a target task to reuse knowledge and behaviors
acquired by an agent in one or more source tasks. In our transfer
learning framework, we assume that there are two different but re-
lated tasks: a source and a target. We define both tasks as MDPs,
where information is transferred from the source task (MDP1) into
the target task (MDP2).

MDP1 is defined by the tuple (S1, A1, P1, R1, γ1), while MDP2

by (S2, A2, P2, R2, γ2), where Si ∈ Rdi , Ai ∈ Rqi , Pi, Ri :
Si → R and γi for i ∈ {1, 2} represent the state space, action
space, transition probability and the discount factor of each of the
1In case of stochastic MDPs then q(a) on line 7 is found by aver-
aging over a number of successor states.

2



Algorithm 1 Fitted Value Iteration for deterministic MDPs
1: Randomly sample m states from the MDP
2: Ψ ← 0
3: n ← the number of available actions in A
4: repeat
5: for i = 1 → m do
6: for all a ∈ A do
7: q(a) ← R(s(i)) + γV (s(j)

′
)

8: y(i) ← max q(a)

9: Ψ ← argminΨ
∑m

i=1 (y
(i) −ΨTΦ(s(i)))

2

10: until Ψ Converges

MDP respectively. In this paper, we assume that the source task
can be easily learned and that an optimal policy, π∗

1 , has already
been found.2 We note that our methods do not require similarities
between any given pairs of source task / target task constituents. In
other words, the source and target task can have differences in state
spaces, action spaces, transition probabilities, reward functions,
and/or discount factors. In Section 6, we show positive results
when transferring between tasks that have different state spaces,
action spaces, transition probabilities, and reward functions.

3.5 Inter-State Mapping
In order to enable transfer between tasks with different state and

action spaces, some type of inter-state mapping, χ, must be used.
The inter-state mapping, χ : S2 → S1, is a function mapping

the state space of MDP2 into MDP1. It describes the relationship
between the state space representations among the different but re-
lated MDPs by finding a label s1 ∈ S1, to an input s2 ∈ S2. For at-
taining such an inter-State mapping a supervised learning algorithm
should be used. The major problem for any function approximator
is the missing correspondence between the inputs, being states in
S2 to the outputs being states in S1. We approach this problem by
finding this correspondence between the inputs and the labels in a
common task-subspace as described in Section 4.

Such a function is essential to our transfer framework since it is
used to transfer knowledge from a source task agent into a target
task agent, which acts in a different state space, with a different
state representation (as described in Section 5.1).

4. LEARNING AN INTER-STATE MAPPING
At a high-level, our transfer framework can be decomposed into

three major phases. In the first phase, the function χ is learned,
mapping the states from MDP2 into MDP1. As discussed in this
section, χ is learned by collecting transitions from the source task
and target task and identifying correspondences. The second phase
finds an initial policy for task two, πtr in MDP2, by identifying ac-
tions in the target task that are most similar to actions selected in the
source task by π∗

1 (see Section 5.1). The third phase uses samples
gathered by πtr as an initialization for fitted value iteration, rather
than using randomly selected samples, finding an optimal policy
π2

∗ of MDP2 (see Section 5.2).
We define a common task subspace, Sc, as a subspace that de-

scribes shared characteristics between the tasks MDP1 and MDP2.
Generally, Sc has a lower dimensionality than S1 or S2 and is de-
termined by common state semantics shared between the two tasks.

2The framework is not limiting to having an optimal policy — we
believe suboptimal policies could also be used successfully — but
we focus on optimal policies for clarity of exposition.

This subspace is described via the control problem’s definition or
is user defined. In many cases, manually defining such a common
task subspace is relatively easy. In the case of control problems,
the subspace construction can be influenced by the particular goal
or goals an agent must achieve in a task. As an illustration, consider
the problem of transfer between agents with two different robotic
arms, each of which has acts in a different dimensionality space
(i.e., has a different description of state because of different sensors
and or degrees of freedom). In this case, Sc can be defined as the
position and orientation of the end effector in both robots. Thus,
even with such a nonlinear continuous MDPs setting, attaining a
common task space requires less effort than trying to manually en-
code the action and state variables mappings.

Sc is used to determine the correspondence between state suc-
cessor state pairs of MDP1 and MDP2, which in turn will generate
data used to approximate χ. Given that the two tasks are related
through some common task subspace Sc ∈ Rdc , we proceed by
learning a function χ : S2 → S1, mapping the two state spaces of
MDP1 and MDP2 together. As discussed in Section 5.1, χ alone is
capable of transferring policies from MDP1 to MDP2 by effectively
finding a good prior for the agent in MDP2.

We now explain how χ is learned. We take as input (1) n1

state successor state patterns of the d1 dimensional state space S1,
〈s1, s′1〉 (gathered from interactions with the source task), (2) n2

state successor state patterns of the d2 dimensional state space S2,
〈s2, s′2〉 (gathered from interactions with the target task), and (3)
a common task subspace Sc with dimensions dc ≤ min{d1, d2}.
Algorithm 2 proceeds by projecting each of the above patterns into
Sc, attaining n1 patterns of the form 〈s(i)c,1, s

′(i)
c,1 〉, were the sub-

script {c, 1} denotes mapping states from S1 into states in Sc, for
i = {1, 2, . . . , n1}, corresponding to the projected S1 states (line 2
of Algorithm 2). Additionally, n2 patterns of 〈s(j)c,2, s

′(j)
c,2 〉 are found

on line 4 of Algorithm 2, where the subscript {c, 2} represents the
notion of state space S2 states in Sc and j = {1, 2, . . . , n2}, corre-
sponding to the projected S2 states. The algorithm next calculates
a minimum distance on the n1 and n2 patterns (lines 6–8). Once a
correspondence between the projected states in Sc has been found,
full states rather than subspace states are required to train χ. These
are found by trying all the combinations in S1 and S2, lines 10–
12, generating the recommended sc,1 and sc,2 (further discussed in
Section 4.2). The algorithm collects these combinations (line 12)
so that χ represents a best fit mapping between S2 and S1 via Sc.

4.1 Problem: Mapping Unrelated States
At this stage two potential problems arise. The first is that it is

possible that states in S2 are mapped into states in S1, even when
they are not related. This is a common problem in transfer learning
(related to the problem of negative transfer [10]) which we can-
not solve, but work to avoid by considering the distance between
successor states.

Consider patterns in the target task, 〈s2, s′2〉, and a pattern in
the source task, 〈s1, s′1〉. Using Algorithm 2, lines 2 and 4, we
find that f2 and f1 maps each of the successor states into the com-
mon sub-space as 〈sc,2, s′c,2〉 and 〈sc,1, s′c,1〉 respectively. If the
distance d, as measured by ||〈sc,1, s′c,1〉, 〈sc,2, s′c,2〉||2, is greater
than some threshold parameter (line 9), it suggests this mapping is
suspect because the initial state successor state pair, 〈s2, s′2〉, has a
poor correspondence with the source task pattern, potentially harm-
ing the agent’s performance in MDP2.3 This state may not be the
best choice for a prior in the target task — only states with small

3Even if the two tasks are closely related this could occur due to a
large difference in the action spaces of the two tasks.
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Algorithm 2 Learn an Inter-State Mapping

Require: n1 random samples of 〈s(i)1 , s′(i)1 〉n1
i=1; n2 random sam-

ples of 〈s(k)2 , s′(k)2 〉n2
j=1; f1 and f2 representing the functions

projecting S1 and S2 into Sc, respectively; and threshold β1

1: for i = 1 → n1 do
2: 〈s(i)c,1, s

′(i)
c,1 〉 ← f1〈s(i)1 , s′(i)1 〉

3: for j = 1 → n2 do
4: 〈s(j)c,2, s

′(j)
c,2 〉 ← f2〈s(j)2 , s′(j)2 〉

5: for k = 1 → n2 do
6: for l = 1 → n1 do
7: d(l) ← ||〈s(l)c,1, s

′(l)
c,1 〉 − 〈s(k)c,2 , s

′(k)
c,2 〉||

2

8: Calculate l∗ ← argminl d
(l)

9: if d(l
∗)

best ≤ β1 then
10: s(k)c,1 ← all combinations of s1
11: s(l

∗)
c,2 ← the combinations of s2

12: Collect all combinations of the latter s2 and s1 as inputs
and outputs, respectively, to approximate χ

13: else
14: Do Nothing {ignore current sample}
15: Approximate χ

distances are used as inputs and outputs for the supervised learning
algorithm.

4.2 Problem: Non-injective Mapping
The second potential problem is that the function χ must map

all state variables from the target task into the source task. How-
ever, the correspondence between the inputs, states in S2, and the
outputs, states in S1, was found in the common state subspace Sc.
The projection functions, f1 and f2, from S1 and S2 respectively,
are not-injective. Thus, there may be a problem when attempting
to fully recover the initial data points in S1 and S2, corresponding
to sc,1 and sc,2, which is critical when approximating χ.

We approach this problem by verifying all possible states in s1 ∈
S1 and s2 ∈ S2 corresponding to the intended sc,1 and sc,2 respec-
tively. We then consider all combinations of the initial states, on
line 12, that were mapped together using Algorithm 2, as inputs
and outputs. By that, the authors have avoided the need for an in-
verse mapping f−1

1 and f−1
2 to recover the original states in S1

and S2. Once the correspondence between the patterns of S1 and
S2 has been determined, a supervised learning scheme attains χ.
LWR was used (line 15 of Algorithm 2) to approximate χ, which
is used in turn to determine the transferred policy, πtr , as described
in the following section.

5. POLICY TRANSFER AND RL IMPROVE-
MENT

To transfer between agents with differences in the action spaces
some type of a mapping representing the relations between the al-
lowed actions of the source and target agent should be conducted.
In finding a mapping of the action spaces between the tasks, there
exists a major problem. The problem relates to the difference in
dimensions between the two action spaces. Solving this problem
could not be approached as done for the state space case in Sec-
tion 3.5, since it is not trivial at all to determine some common
action space shared between the tasks to be projected to so to find
the inputs and labels which in turn would be used to map the action

Algorithm 3 Collect State-action Pairs
Require: m random initial s2 states, optimal policy of the first

system π∗
1 , probability transition functions of the two systems

P1(s1, a1) and P2(s2, a2), the action space of system two A2,
and distance threshold β2

1: Set q2 to be the size of A2

2: for i = 1 → m do
3: s1

(i) ← χ(s2
(i))

4: a(i)
1 ← π∗

1(s
(i)
1 )

5: Attain s′(i)1 ∼ P1(s1
(i), a1

(i)) sampled according to the
state transition probability P1

6: for k = 1 → q2 do
7: Attain s′(k)2 ∼ P2(s2

(i), a2
(k)) sampled according to the

state transition probability P2

8: Attain the corresponding s′(k)1,c ← χ(s′(k)2 ) using the inter-
state mapping χ

9: d(k) ← ||s′(i)1 − s′(k)1,c ||
2

10: d(i)best ← mink(d
(k))

11: j ← argmink d
(k)

12: if d(i)best ≤ β2 then
13: Collect the following pattern (s(i)2 , a(j)

2 ) as one training
pattern to approximate π2

14: else
15: Do Nothing {Ignore this sample}
16: Using collected patterns, approximate πtr

spaces together4.
Rather than approaching this problem explicitly and conduct-

ing a mapping between the action spaces of the tasks, we perform
an implicit mapping using the inter-state mapping learned in Sec-
tion 3.5.

The inter-state mapping, χ, will enable transfer from MDP1 to
MDP2. This transfer is based on a similarity measure between state
successor states in both MDPs, in the sense that only state transi-
tions that relatively have acceptable distance measures are taken
into account. Then, the action producing such a successor state in
MDP2 is held as the best action. This section will further detail
the above scheme and explain how χ is used to conduct a policy
transfer between the two MDPs.

5.1 Policy Transfer Scheme
The inter-state mapping, as learned in the previous section, is

capable of providing the agent in the target task with an informative
prior. Finding the transferred policy, πtr , is done in two phases.
First, state-action pairs are collected in the source task, according to
π∗
1 (see Algorithm 3). Second, πtr is constructed from the collected

samples, and the learned inter-state mapping.
Algorithm 3 needs to be able to generate successor states for both

MDPs, lines 5–7. Thus, it is not necessary for Algorithm 3 to have
access to a transition model or simulator, where agents in both tasks
can generate next states by taking actions.

Algorithm 3 finds an action, a2 ∈ A2, for a state s2 ∈ S2, by
using the inter-state mapping, χ, and a user-defined threshold, β2.
Using χ, the algorithm maps each of the m random states, s(1)2 –
s(m)
2 , to corresponding states, s(1)1 –s(m)

1 . It then selects on action,
a1, for a state in S1, according to the optimal policy of MDP1,

4This is in addition to the problem of determining an inverse map-
ping for χ, since we need to approximate a starting policy in the
target task.
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Algorithm 4 Fitted Value Iteration Algorithm + Transfer
1: Starting from random initial states, sample f states according

to πtr

2: Ψ ← 0
3: n2 ← the size of the action space A2

4: repeat
5: for i = 1 → f do
6: for all a2 ∈ A2 do
7: q(a2) ← R(s(i)) + γV (s(j)

′
)

8: y(i) ← maxa2∈A2 q(a2)

9: Ψ ← argminΨ
∑f

i=1 (y
(i) −ΨTΦ(s(i)))

2

10: Greedily sample new f states according to the fitted Ψ val-
ues representing πfit = argmaxa Es′∼Psa [Ψ

TΦ(s′)]
11: until Ψ converges
12: Represent π∗

2 = argmaxa Es′∼Psa [Ψ
TΦ(s′)]

and transients into the optimal s′1 state according to the probability
transition function P1(s1, a1).

The algorithm examines all possible actions in A2 from the given
initial state s(i)2 to transient to q2 different subsequent states s′2 (see
line 6 – 7 of Algorithm 3). Then for each s′2, χ is used again to
find the corresponding s′1 denoted by s′1,c in the algorithm, line 8.
At this stage, a minimum distance search between the attained s′1,c
and the one recommended by π∗

1 is conducted. If the distance is
below the user defined threshold β2 then the action a2 correspond-
ing to the minimum distance is chosen to be the best action for that
random initial state s2. This sequence is repeated for the m differ-
ent random initial states of S2, resulting in a data set of state-action
pairs in the target task, guided by π∗

1 .
This data set is used to approximate πtr , done via LWR in our

experiments, and this policy will be used as a starting policy by the
target task agent.

5.2 Improving the Transferred Policy
The policy πtr serves as an initial policy for the MDP2 agent —

this section describes how the policy is improved via FVI, using an
initial trajectory produced by πtr .

We used a minor variant of FVI, where the value function is re-
peatedly approximated after fitting the Ψ values. Starting from a
small number of initial states, f , sampled through πtr , we attempt
to find an optimal policy π∗

2 , by iteratively re-sampling using the
fitted Ψ values as needed.

Algorithm 4 works to find optimal values for the parameters to fit
the value function (Equation 1) on a set number of samples, which
were sampled using πtr . Then, after each iteration of the repeat
loop, Algorithm 4 samples a new set of states according to current
policy represented by πfit. The sampling / value fitting process is
repeated until convergence, attaining an optimal policy. The dif-
ference between Algorithm 4 to the one described in Section 3.2,
is that the initial samples are not gathered according to a random
policy, but by following πtr . Assuming that πtr is a good prior,
this procedure will better focus exploration of the policy space.

6. EXPERIMENTS
As a proof of concept, our algorithms were tested on two differ-

ent systems. The first was the transfer from a single mass spring
damper system to a double mass spring damper system, as shown
in Figure 1. The second experiment transferred between the in-
verted pendulum task to the cartpole swing-up task [2] (see Fig-
ure 2). The following two sub-sections will discuss the details of

(a) Simple Mass System (b) Double Mass System

Figure 1: The first experiment uses a policy for the single mass
spring damper system in (a) to speed up learning a policy for
the double mass spring damper system in (b).

(a) Simple Pen-
dulum

(b) Cartpole swing-up

Figure 2: The second experiment uses a policy for the inverted
pendulum in (a) to speed up learning a policy for the bench-
mark cartpole swing-up task in (b).

the experiments and their results.
The values of the discount factor γ, used in Algorithms 1 and 4

were fixed to 0.8 while those of β1 and β2, used in algorithms 2
and 3, were fixed at 0.9 and 1.5, respectively. In fact, we found
that varying the values of β1 and β2 did not significantly affect the
performance of the algorithms, suggesting that our algorithms are
robust to changes in these parameters.5

6.1 Single to Double Mass
For our first experiment, we transferred a policy between the sys-

tems shown in Figure 1. Detailed descriptions of the tasks’ dynam-
ics can be found elsewhere [4]. S1 is described by the {x1,1, ẋ1,1}
variables, representing the position and the velocity of the mass
M1,1. S2 = {x1,2, ẋ1,2, x2,2, ẋ2,2}, representing the position and
the velocity of M1,2 and M2,2.

A reward of +1 is given to the agent of system one if the position
of the mass M1,1 is 1 and −1 otherwise. On the other hand, a re-
ward of +10 is given to the agent of system two if the position and
the velocity of the mass M1,2 is 1 and 0 respectively, and otherwise
a reward of −10 is given. The action spaces of the two systems
are A1 = {−15, 0, 15} and A2 = {−15,−10, 0,+10,−15}, de-
scribing the force of the controller in Newtons. The agent’s goal is
to bring the mass of system two, M1,2, to the state s2 = {1, 0},
which corresponds to a position of 1 (x1,2 = 1) and a velocity of
zero (ẋ1,2 = 0). In our transfer learning setting, the agent relies on
an initial policy delivered from the controller of the system MDP1

and improves on it. In the source task, FVI found a policy to bring
the mass M1,1 to the s1 = {1, 0} goal state.

6.1.1 Common Task Subspace
5We believe that carefully setting β1 and β2 may only be necessary
when the source and target tasks are very dissimilar.
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In both systems the control goal is to settle the first mass so that
it reaches location x = 1 with zero velocity. Thus, the common
task subspace Sc is described via the variables x and ẋ for mass #1
in both systems.

6.1.2 Source Task: Single Mass System
The FVI algorithm was used to learn an optimal policy, π∗

1 , for
the first mass system. A parametric representation of the value
function was used:

V (s) = ΨTΦ(s)

V (s) =
(
ψ1 ψ2 ψ3 ψ4 ψ5

)





x1,1
2

x1,1

ẋ2
1,1

ẋ1,1

1





The second variant of Algorithm 1, described via Algorithm 4
but starting from random samples (source task), was able to con-
verge to the optimal parametric values approximating the value
function on a single core of a dual core 2.2 GHz processor in about
18 minutes, after starting with 5000 random initial samples. The
resulting controller, represented as values in Ψ, was able, in 0.3
seconds, to control the first mass system in its intended final state:
s1 = {1, 0}.

6.1.3 Target Task: Double Mass System
To test the efficacy of our learned χ by Algorithm 2 and transfer

method using Algorithms 3 and 4, we varied the values for n1 and
n2 from 1000–8000, which corresponds to the number of samples
used in the target task.6 Algorithm 1 was run with these different
sets of samples, which were in turn used to generate policies for the
target task. The performance of these policies in the target task, af-
ter convergence, are shown in Figure 3, and are compared to using
random initial samples (i.e., no transfer).

The results in Figure 3 show that FVI performs better when ini-
tialized with a small number of states sampled from πtr than when
the states are generated by a random policy. Further, results con-
firm that as the number of samples increase, both transfer and non-
transfer learning methods converge to the (same) optimal policy.

Conclusion 1: πtr , which uses the learned χ, allows an agent
to achieve a higher performance with a fixed number of sampled
target task states compared to a random scheme.

Finally, Algorithm 4 was used to attain the optimal policy π∗
2

when supplied with 7000 initial points, where the points were sam-
pled randomly and from πtr . The convergence time to attain an
optimal policy starting from the initial states generated through πtr

was approximately 4.5 times less than that starting from randomly
sampled initial states.

Conclusion 2: πtr allows an agent to converge to an optimal
policy faster by intelligently sampling the initial states for FVI that
are improved on.

6.2 Inverted Pendulum to the Cartpole Swing-
up

For the second experiment, we transfered between the systems
shown in Figure 2. A detailed description of the task’s dynam-
ics can be found elsewhere [2]. S1 is described by the θ1 and θ̇1
variables representing the angle and angular speed of the inverted

6This corresponds to roughly 10–175 states ignored in Algo-
rithm 2, line 14.

Figure 3: This graph compares the performance of converged
policies on the double mass system, as measured over 1000 in-
dependent samples of random start states in the target task
measured over independent 500 trials. The x-axis shows the
number of target task states used by FVI and the y-axis shows
the average reward after FVI has converged (without resam-
pling the states).

pendulum respectively. S2 is described by θ2, θ̇2, x, and ẋ rep-
resenting the angle, angular speed, position, and velocity of the
cartpole, respectively.

The reward of system one (inverted pendulum) was defined as
Rsys1 = cos(θ1) while that of system two (cartpole swing up)
was Rsys2 = 10 cos(θ2). The action spaces of the two systems
are A1 = {−15,−1, 0, 1, 15} and A2 = {−10, 10}, describing
the allowed torques, in Newton meters, and forces, in Newtons,
respectively. The cart is able to move between −2.5 ≤ x ≤ 2.5.
The agent’s goal in the source task is to bring the pendulum of
system two to state s2 = {0, 0}, which corresponds to an angle
of 0 (θ2 = 0) and an angular velocity (θ̇2 = 0). In our transfer
learning setting, the agent relies on an initial policy delivered from
the controller of the first system and improves on it. In the source
task, FVI found a policy to bring the pendulum to the state s1 =
{0, 0}.

6.2.1 Common Task Subspace
In both systems the control goal is to settle the pendulums in

the {0, 0} upright state corresponding to an angle of zero and an
angular velocity of zero. Thus, the common task subspace Sc is
described via the variables θ and θ̇ of both systems.

6.2.2 Source Task: Simple Pendulum
The FVI algorithm was used to learn an optimal policy, π∗

1 . As
shown in Equation 1, a parametric representation of the value func-
tion was used:
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Figure 4: This figure compares the performance of the cartpole
swing-up task, measured by the averaged reward, vs. different
numbers of initial starting states. Starting states can be sam-
pled via the transfer policy (from the inverted pendulum task)
or randomly.

V (s) = ΨTΦ(s)

V (s) =
(
ψ1 ψ2 ψ3 ψ4 ψ5

)





θ21
θ1
θ̇1

2

θ̇1
1





The second variant of Algorithm 1 described via Algorithm 4,
was able to converge to the optimal parametric values approximat-
ing the value function when on a single core of a dual core 2.2 GHz
processor in about 23 minutes after starting from 5000 random ini-
tial samples. Then the controller was able, in 0.2 sec, to control the
inverted pendulum in its intended final state s1 = {0, 0}.

6.2.3 Target Task: Cartpole Swing-up
To test the efficacy of our learned χ using Algorithm 2 and trans-

fer method using Algorithms 3 and 4, we varied the values for n1

and n2 from 1000 – 10000, which corresponded to the number of
samples in the target task.7 Algorithm 1 was run with these differ-
ent sets of samples, which were in turn used to generate policies for
the target task. The performance of these policies in the target task,
after convergence, are shown in Figure 4, and are compared to the
random scheme (i.e., no transfer).

The results in Figure 4 show that FVI performs better when ini-
tialized with a small number of states sampled from πtr than when
the states are generated by a random policy. Further, the results
confirm that as the number of samples increase, both transfer and
non-transfer learning methods converge to the (same) optimal pol-
icy.

Finally, Algorithm 4 was used to attain the optimal policy π∗
2

when supplied with 7000 initial points, where the points were sam-
pled randomly and from πtr . The convergence time to attain an
7This corresponds to roughly 18 – 250 states ignored in Algo-
rithm 2, line 14.

Table 1: Experiment Results Summary

DOUBLE MASS SYSTEM
NO TL WITH TL

TRANSITIONS REWARD TIME REWARD TIME
1000 1.7 6.5 3.9 4.5
5000 8.7 27 9.1 9.5

10000 9.9 43 9.9 11.8
CARTPOLE SWING-UP

NO TL WITH TL
TRANSITIONS REWARD TIME REWARD TIME

1000 1.4 10 3.1 7
5000 6.09 32 8.4 15

10000 9.9 160 9.9 27

optimal policy starting from the initial states generated through πtr

was approximately a factor of 6.3 less than that starting from ran-
domly sampled initial states.

These results, summarized in Table 1, confirm the conclusions
made in Section 6.1.3. The performance, as measured by the fi-
nal average reward, was higher when using TL than when using
randomly selected states. Furthermore, FVI was able to find an
optimal policy in fewer minutes, denoted by T in the table, when
using TL than when using randomly selected initial states.

7. CONCLUSIONS & FUTURE WORK
We have presented a novel transfer learning approach based on

the presence of a common subspace relating two tasks together.
The overall high level scheme shown in Figure 5 emphasizes that
our frame work constitutes of three major phases.

The first is the determination of the inter-state mapping χ, relat-
ing the state spaces of the tasks, using a common task subspace,
Sc, as described in Section 4. It relies on distance measures among
state successor state pairs in both task to achieve the goal of find-
ing a correspondence between the state spaces of the two tasks and
then conducts a function approximation technique to attain χ.

The second, is the determination of starting policy in the tar-
get task, πtr , based on similarity transition measures between the
two related tasks as presented in Section 5.1. This is achieved by
mapping state successor states pairs in the target task back to cor-
responding pairs in the source task and then conducting a search
to the most similar transition recommended by the optimal policy
of the source task. The action in the target task with the closest
similarity to that in the source task accompanied with the intended
initial state is collected as in a data set to approximate a good prior
in the target task.

Since πtr is a good starting prior for the agent in the target task
to start from it needed improvement. The last point constitutes the
third phase of our framework, as shown in Figure 5, which was
conducted using FVI and detailed in Section 5. Here, the states
recommended by πtr are used as an initial trajectory to start from
and improve on.

In our approach, the common subspace was determined manu-
ally which was a good trade-off over the determination of the inter-
task mapping manually. Such a space is relatively easy to design
by a human just from knowing the control problem goal.

Results show that our algorithm was able to surpass ordinary fit-
ted value iteration algorithms by attaining higher reward with fewer
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Figure 5: This figure represents the overall scheme of our
framework constituting of three major phases.

initial states. Additionally, our results showed significant time re-
ductions when attempting to find optimal policies in the target task,
relative to the normal FVI algorithms.

Our future work will involve three major goals. The first is to
extend our algorithms to operate in stochastic model-free MDP set-
tings. The second is to determine the common subspace automat-
ically in both the action and state spaces. Various ideas could be
used to achieve such a goal, one of which could be a dimension-
ality reduction scheme constrained by the common characteristics
shared by the different tasks. The third is to test our transfer method
with multiple algorithms including policy iteration, Sarsa(λ) and
Q-learning.
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ABSTRACT

Before deployment, agents designed for multiagent team set-
tings are commonly developed together or are given stan-
dardized communication and coordination protocols. How-
ever, in many cases this pre-coordination is not possible
because the agents do not know what agents they will en-
counter, resulting in ad hoc team settings. In these prob-
lems, the agents must learn to adapt and cooperate with
each other on the fly. We extend existing research on ad hoc
teams, providing theoretical results for handling coopera-
tive multi-armed bandit problems with infinite discounted
rewards.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]

General Terms

Algorithms, Theory

Keywords

Ad Hoc Teams, Agent Cooperation: Teamwork, coalition
formation, coordination, Agent Reasoning: Planning (single
and multi-agent), Agent Cooperation: Implicit Cooperation

1. INTRODUCTION
Autonomous agents are becoming increasingly prevalent

in society, both as robots and as software agents. As this
trend progresses, there is a growing need for agents to in-
teract and cooperate with other agents. In many situations,
these interactions can be specified ahead of time, as in many
multiagent team settings. However, agents are also becom-
ing more robust and reliable, so it is likely that they will also
encounter agents that are unknown during development. In
these cases, the agents should be able to adapt and cooperate
with these unknown teammates.

In a recent AAAI challenge paper, Stone et al. [13] for-
mally introduced the ad hoc team setting and described it as
a problem in which strategies for team coordination cannot
be specified a priori. As autonomous agents proliferate in
our society, it is important that they are capable of handling
ad hoc team settings. Specifically, we study the effectiveness
of an individual ad hoc team agent’s strategy to cooperate
with a teammate.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a motivating example for this research, and

Section 3 specifies the formal framework that will be used
in this paper, specifically a cooperative multi-armed bandit
with infinite discounted rewards. Then, Section 4 presents
the main contribution, namely theoretical results consider-
ing a three armed bandit with arbitrary distributions of the
arms. Next, Section 5 extends these results for many arms.
Section 6 situates our contribution in the literature, and Sec-
tion 7 concludes.

2. MOTIVATING EXAMPLE
Consider two robots tasked with picking up as much trash

as possible from two beaches. Each robot must recharge its
batteries daily, and between recharging, the travel times to
the beaches, and the tides, each robot is only able to clean
one beach a day. The tides wash away trash that a robot
does not pick up, so the trash does not build up. There-
fore, the robots are set to pick up trash during alternating
tides. Each robot should choose to clean the beach with the
highest amount of trash, but the amount of trash is random,
depending on the weather and popularity of the beaches as
well as additional factors. The robots communicate to each
other about how much trash they found at the beaches they
cleaned. By trying both beaches and tracking the average
amount of trash picked up, the robots can learn to clean
the messier beach with high probability. The robots try to
maximize the trash picked up over time, but they value im-
mediately cleaning over future cleaning.

Suppose that several years have passed and one of the
robots has broken, and original developers no longer work on
the project. Therefore, another robot has been built to help
clean the beaches. The new robot has an internet connection
and can gather information about the popularities of each
beach from a municipal website. Also, a new, more popular
beach has been created, but the old robot does not know the
path to this beach. Unfortunately, this path cannot be added
to the old robot’s memory because the original developers
are not available. The new robot can still communicate the
amount of trash it finds at each beach, but the old robot
cannot receive other information. The new robot’s goal is
still to maximize the amount of trash the robots pick up. If
the new robot were acting alone, it could pick up the most
trash at the new beach, but since it is on a team, it can
also affect what beach the old robot chooses. The old robot
cannot go to the new beach, so the new robot should use its
additional information help guide the old one to clean the
more popular of the older beaches. Another robot is being
built to replace the old robot, but its completion time is

9



unknown.
The above fictional setting can be formalized as a coopera-

tive multi-armed bandit [12] with infinite discounted rewards
because the robots are interested in their long term rewards,
but value immediate rewards more than later rewards. Im-
mediate rewards are more valuable because there is a chance
that the episode will end before the robots receive any fu-
ture rewards. This problem is similar to the one described
by Stone and Kraus [15], except that we consider infinite
discounted rewards. This formulation is a commonly stud-
ied problem in reinforcement learning [16]. This problem is
a simple form of the ad hoc team problem since the behavior
of the teammate is fixed and known. Despite these limita-
tions, this problem raises interesting questions about how
a knowledgeable agent can teach a novice without explicit
communication while operating embedded in the domain.

3. MULTI-ARMED BANDIT
The multi-armed bandit (MAB) problem [12] is well stud-

ied in sequential decision making. The problem is modeled
after slot machines (often referred to as one-armed bandits),
where an agent must choose between a set of arms to pull.
Each arm has a payoff distribution that is usually unknown
to the agent, and the agent wants to maximize its sum of
payoffs over time. An important problem that comes up
from the multi-armed bandit domain is that of exploration
vs. exploitation, where the agent must decided whether to
pull the arm with the best observed sample mean or pull
other arms to gain more information about their distribu-
tions. The multi-armed bandit problem is a stateless action
selection problem, which is a fundamental problem for rein-
forcement learning theory [16].

This research adopts Stone and Kraus’s [15] formulation of
a multi-agent version of the MAB problem. The agents share
payoffs and want to maximize this shared payoff. Specifi-
cally, there are two agents: a teacher and a learner. The
teacher has complete information about the arm distribu-
tions and the behavior of the learner. The learner has no
prior information and estimates the arm distributions by
observing the results of pulls, and greedily pulling the arm
with the highest sample mean. Importantly, the teacher is
embedded in the environment as a part of the team and its
rewards count towards the team reward, so it cannot focus
on teaching without considering what other rewards it could
achieve. Stone and Kraus consider the case in which there
are a finite number of pulls remaining, with undiscounted re-
wards. They give several interesting results for this case, but
do not handle the case where there are an infinite number of
pulls, which is a common formulation of the MAB problem.
We address this gap, considering infinite sequences of pulls
discounted by a multiplicative factor, γ. We extend the re-
sults from Section 3 of their paper to the infinite play with
discounted rewards scenario.

Intuitively, γ can be seen as either an interest rate or as a
chance of the problem ending. Viewing it as an interest rate,
immediate rewards are more valuable as you can invest the
reward and earn interest over time. On the other hand, if the
episode has a chance of ending, immediate rewards are more
valuable because it is uncertain whether future rewards will
be received. When the number of remaining pulls is known,
γ can be set to 1 because there is no uncertainty about the

episode ending and the maximum reward is bounded. In the
case of infinite pulls, the episode will not end, and setting
γ < 1 is necessary to bound the maximum cumulative reward
achievable from any state.

We consider the case with three arms, where the teacher
may pull any arm, but the learner is constrained to the two
arms with lower expected values. Therefore, the teacher
must sacrifice some reward to show the learner a pull from
a relevant arm. We will refer to these arms as Arm∗, Arm1,
and Arm2, where Arm∗ is the arm only pullable by the
teacher. Let the true expected value of these arms be µ∗,
µ1, and µ2 with µ∗ > µ1 > µ2 w.l.o.g. Similarly, let the ob-
served sample means of Arm1 and Arm2 be x̄1 and x̄2. Note
that if µ∗ is not the largest, the teacher should always pull
the arm with the highest expected payoff. For this paper,
we assume that the teacher and learner alternate pulls and
the discount factor is applied after a pair of pulls, one by
the teacher and one by the learner. Furthermore, we assume
that the learner follows a greedy policy, pulling the arm with
the highest observed sample mean and optimistically pulling
previously unseen arms.

4. THREE ARMS WITH ARBITRARY DIS-
TRIBUTIONS

This section presents theoretical results that apply regard-
less of the distributions of the payoffs for the arms. For these
proofs, we assume that the payoff of each arm only depends
on the underlying distribution and the number of pulls of
that arm, and not on time. In other words, each arm has a
fixed sequence of payoffs that is only moved through when
that arm is pulled.

4.1 The teacher should consider pulling Arm1

It is sometimes beneficial for the teacher to teach, sac-
rificing its pull of Arm∗ to pull Arm1. We know that in
any configuration, the maximum expected value achievable
is (µ∗ +µ1) 1

1−γ
, which occurs when the teacher always pulls

Arm∗ and the learner always pulls Arm1. Similarly, the min-
imum expected value achievable is (µ2 + µ2) 1

1−γ
. Consider

the situation when µ∗ = 10, µ1 = 9, µ2 = 5, x̄1 = 6, x̄2 = 7,
and n1 = n2 = 1. Suppose that the distribution of pay-
offs is known, and the probability of Arm1 obtaining a value
≥ 8 is η > 1

2
. Therefore, if the teacher pulls Arm1, x̄1 will

be greater than x̄2 with probability η. After this pull, the
teacher will play arbitrarily. Let us call this pull and the
following ones S. In the worst case scenario, all remaining
pulls of each agent are of Arm2. Therefore, we know that
E[V (S)] ≥ µ1 + ηµ1 + (1− η)µ2 + γ(µ2 + µ2) 1

1−γ
.

If the teacher instead chooses to pull Arm∗, the learner has
seen only a single, low pull from Arm1, so it will greedily pull
Arm2. Afterwards, the teacher plays arbitrarily, resulting
in sequence T . The best case scenario is that remaining
teacher’s pulls are of Arm∗, and the learner’s are of Arm1.
Then, E[V (T )] ≤ µ∗ + µ2 + γ(µ∗ + µ1) 1

1−γ
.

By comparing these two expected values, we get that if
γ ≤ 0.1, E[V (S)] > E[V (T )]. For example, if η = 0.6
and γ = 0.05, then E[V (S)] ≥ 16.92 and E[V (T )] ≤ 16.0.
Therefore, there are situations in which the teacher should
teach, pulling Arm1 instead of Arm∗.
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4.2 If the learner is going to pull Armi, the
teacher should not pull Armi

If the sample mean x̄i is the highest, the learner will pull
Armi if the teacher’s pull does not change the relative values
of the arms. Let a be the value obtained by pulling Armi.
If the teacher pulls Armi, it will obtain ai and then the
learner will pull Armj , obtaining the value aj . Afterwards,
the teacher follows the optimal policy and the learner con-
tinues to play greedily with respect to the sample means,
resulting in the sequence OPT. So the sequence, S, that
occurs if the teacher pulls Armi is given in Table 1. This
gives a total value of

V (S) = ai + aj + γV (OPT)

n 0 1 ...
Teacher ai OPT
Learner aj

Table 1: The sequence, S, resulting from the teacher
pulling Armi

n 0 1 2 3 ...
Teacher a∗ a′

∗ OPT
Learner ai aj

Table 2: The sequence, T , resulting from the teacher
pulling Arm∗ twice instead of Armi

Now, consider an alternative sequence, T , where the teacher
instead pulls Arm∗ twice, and then follows the optimal pol-
icy. If the teacher instead pulls Arm∗, then the learner will
pull Armi and obtain ai. If the teacher then pulls Arm∗

again, the learner will pull Armj and obtain aj . Then, the
optimal policy after these pulls will be the same as in se-
quence S as the learner has seen the same pulls of Arm1 and
Arm2. Let us call the values obtained by pulling Arm∗ a∗

and a′

∗ respectively. Therefore, the sequence T is given in
Table 2 This gives a total value of V (T ) = a∗ + ai + γa′

∗ +
γaj + γ2V (OPT).
Let us look at the expected values of these sequences:

E[V (S)] and E[V (T )]. We know that E[ai] = µi ≤ µ1,
E(aj) = µj ≤ µ1, and E(a∗) = E(a′

∗) = µ∗. So E[V (S)] =
µi+µj+γE[V (OPT )], and E[V (T )] = µ∗+µi+γµ∗+γµj+
γ2E[V (OPT )]. By the definition of OPT, we know

E[V (OPT)] ≤ (µ∗ + µ1)
1

1− γ

(1− γ)E[V (OPT)] ≤ (µ∗ + µ1)

In the following calculations, for the sake of brevity, let
EO = E[V (OPT)]. We know that µ∗ > µi and µ∗ > µj , so

µ∗ > (1− γ)µj + γµi

µ∗ + γµ∗ > (1− γ)µj + γ(µi + µ∗)

µ∗ + γµ∗ > (1− γ)µj + γ(1− γ)EO

µ∗ + γµ∗ + γ2EO > (1− γ)µj + γEO

µ∗ + γµ∗ + γµj + γ2EO > µj + γEO

µ∗ + µi + γµ∗ + γµj + γ2EO > µi + µj + γEO

E[V (T )] > E[V (S)]

The expected value of sequence T is greater than that of
S. Therefore, it is desirable to follow sequence T over S, so
the teacher can achieve higher reward without pulling Armi.
This reasoning shows that pulling Armi is not optimal in this
scenario, so the teacher should not pull Armi if the learner
would currently pull Armi.

4.3 The teacher should never pull Arm2

If x̄2 > x̄1, we know that the teacher should not pull Arm2

from Section 4.2. Therefore, we only need to consider the
case when x̄1 > x̄2.

The intuition of this proof is that the teacher can follow
a policy that either 1) makes its history match up with the
one achieved by pulling Arm2 at least once or 2) if the his-
tories do not match, the new policy is better. To this end,
we use the idea of simulating another series of pulls, as do
Stone and Kraus [15]. The idea is that if the teacher has seen
enough pulls of Arm1 and Arm2, it can tell what it and the
learner would have done in other situations. For example, if
the teacher has seen 5 pulls of Arm1 and 3 pulls of Arm2, it
can reason about any sequence of pulls that would have had
≤ 5 pulls of Arm1 and ≤ 3 pulls of Arm2. Note that pulls
of Arm∗ are irrelevant as they do not affect the teacher or
learner because the teacher already knows the payoff distri-
bution of Arm∗ and the learner does not consider Arm∗.

Definition 1. Si(n) is the number of pulls of Armi in
sequence S after the first n pulls. Therefore, Si(n) of the
first n pulls by the teacher and learner were of arm Armi.

Definition 2. Sim(n) is the greatest round number r such
that T1(n) ≥ S1(r) and T2(n) ≥ S2(r). This corresponds to
the number of pulls of S that the teacher can simulate after
following n pulls of T .

Definition 3. T (n) = S(m) iff T1(n) = S1(m) and T2(n) =
S2(m).

Definition 4. T (n) > S(m) iff T1(n) ≥ S1(m) and T2(n) ≥
S2(m) and at least one of the inequalities is strict.

Let us consider the sequence S that occurs from the teacher
pulling Arm2 and then acting arbitrarily. Then, let T be the
sequence resulting from using the following policy:

1. If n = 0, T (n) > S(Sim(n)), or Sim(n) is odd, choose
Arm∗.

2. Else (if T (n) = S(Sim(n)) and Sim(n) is even), choose
the next action of S.

The idea is that the teacher should pull Arm∗ until its history
matches up to S, and then follow the same policy as used in
S. We want to show that E[V (S)] < E[V (T )]. This would
establish that every policy starting with Arm2 is dominated
by some other policy, so it is not optimal to pull Arm2.

n 0 1 2 3 ...
Teacher Arm2 Arm1

Learner Arm1 Arm2

Table 3: A possible sequence of pulls, S.
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n 0 1 2 3 4 5 ...
Teacher Arm∗ Arm∗ Arm1

Learner Arm1 Arm2 Arm2

Table 4: Another possible sequence of pulls, T .

For example, consider the sequences in Table 3 and 4.
Note that S2(1) = 1, S1(1) = 1, T2(3) = 1, and T1(3) = 1.
So Sim(3) = 1, but Sim(2) = 0. Therefore, for pull 4, the
teacher in T will do the same thing as it would for pull 2 of
S (i.e. pull Arm1).
We know that at every point in time, if T has more pulls

of Arm∗ than S and fewer pulls of Arm2 than S, it must
have a higher expected value. Note that all remaining pulls
in both sequences must be of Arm1. We do not condition on
the values of the pulls or on the policy of S since the require-
ments of the following lemmas hold in all cases. Therefore,
we can consider the expected values of each arm indepen-
dently. Therefore, all pulls of Arm2 will have expected value
µ2, etc. So if these conditions hold, we know that the low
pulls of Arm2 will be more discounted in T than in S, and
the high pulls of Arm∗ will be less discounted in T than in S.
Therefore, the E[V (T )] > E[V (S)] if these conditions hold.
Now, we will describe these conditions more exactly and

prove that they hold for these sequences, but first we will rea-
son about the policy for sequence T . Note that the teacher
will start by following the first part of its policy, when n = 0.
If the teacher follows the second part of its policy, there is
at least one n, call it n′, such that T (n′) = S(Sim(n′)) and
Sim(n′) is even. Once the teacher switches to the second
part of its policy, it will take the same actions as the teacher
in S, and the learner will take similar actions. Therefore,
after the teacher switches to the second part of its policy,
T (n) and S(n) will increment similarly, and the teacher will
remain in this part of the policy.

Lemma 1. Sim(n′) < n′

Proof. After n′ steps, there are exactly n′

2
pulls of Arm1

and Arm2 (T1(n
′) + T2(n

′) = n′

2
) because all the teacher’s

pulls have been of Arm∗ until now. But after n′ steps, there
are at least n′

2
+ 1 pulls of Arm1 and Arm2 in sequence S

(S1(n
′) + S2(n

′) ≥ n′

2
+ 1) because the teacher pulled Arm2

at least once, and all the learner’s actions are pulls of Arm1

or Arm2. Thus the simulation of S always lags behind T in
the number of steps simulated: Sim(n′) < n′.

Lemma 2. ∀n > 0, T2(n) ≤ S2(n).

Proof. We will show that T2(n) = S2(Sim(n)), and from
Lemma 1, Sim(n) < n, so T2(n) ≤ S2(n).
Case 1: T (n) > S(Sim(n)) or Sim(n) is odd.
Proof by induction on the number of steps, i, in T .
When i = 2, T2(2) = 0 because the teacher pulls Arm∗ and
the learner pulls Arm1. The first step of S is a pull of Arm2,
so Sim(2) = 0 and S2(Sim(2)) = 0.
Assume that T2(i − 1) = S2(Sim(i − 1). Look at the next
action in T ; if it is a pull of Arm∗ or Arm1, then T2(i) =
T2(i−1) and Sim(i) = Sim(i−1) ⇒ S2(Sim(i)) = S2(Sim(i−
1)). If the next action is a pull of Arm2, then T2(i) = T2(i−
1) + 1 and S2(Sim(i)) = S2(Sim(i − 1)) + 1, because the
new pull of Arm2 can be used to simulate S at least one

more step, but only one more pull of Arm2 can be simulated.
Therefore T2(i) = S2(Sim(i)).
Case 2: T (n) = S(Sim(n)) and Sim(n) is even.

T2(n) = S2(Sim(n)) by the case assumptions.

Lemma 3. ∀n > 0, T∗(n) > S∗(n).

Proof. The proof progresses by reasoning about the pos-
sible histories that the teacher can simulate.

Case 1: T (n) > S(Sim(n)) or Sim(n) is odd.
The teacher in T has only pulled Arm∗, and the teacher in
S has pulled Arm2 at least once, so T∗(n) > S∗(n).
Case 2: T (n) = S(Sim(n)) and Sim(n) is even.

Let n′ be the first pull for which these conditions hold. At
step n′, the only difference between S and T is n′ − Sim(n′)
extra pulls of Arm∗ in T . Afterwards, there are n−n′ steps
in which S and T are identical, with x pulls of Arm∗ in this
period. The final n′ − Sim(n′) steps of S include at least
one pull of Arm1 or Arm2 (the learner’s first action and
any of its later actions). So T∗(n) = n′ − Sim(n′) + x and
S∗(n) ≤ x+n′ −Sim(n′)− 1. Therefore, T∗(n) > S∗(n).

From Lemmas 1-3, we know that for all time steps, T
has more pulls of Arm∗ than S and fewer pulls of Arm2

than S. Since the lemmas hold regardless of the values of
the pulls, we consider the expected values of each pull in-
dependently. So the expected value of each pull is just the
expected value of the arm. We know that the pulls of Arm2

must happen later in T , so they will be more discounted.
Similarly, the pulls of Arm∗ will occur sooner in T , and will
therefore be less discounted. Therefore, the low pulls are
more discounted and the high pulls are less discounted, so
E[V (T )] > E[V (S)]. So the teacher should never pull Arm2.

4.4 The teacher should not teach when n1 = 0
and/or n2 = 0

At the beginning of a task, the learner has no experience
with any of its arms, so it will explore its world optimisti-
cally, pulling each of the arms. From Section 4.2, we know
that the teacher should not pull any arm that the learner
is going to pull. Therefore, the teacher should not pull the
arms that the learner is going to explore.

5. MORE THAN THREE ARMS
Until this point, we have focused on the case where there

are three arms for the agents to pull. However, these results
generalize to the case where there are many arms.

First, notice that adding additional arms that are only
available to the teacher changes nothing. The teacher has
complete knowledge, so it should only consider the arm with
the greatest expected value. Therefore, we can continue to
call this arm Arm∗ and ignore these other arms.

We will focus on the case where there are arms Arm1,
Arm2, . . . , Armz and w.l.o.g. assume that µ1 > µ2 > . . . >
µz. The following conclusions follow quite simply.

• It can be beneficial for the teacher to pull Arm1 - Armz.
Examples similar to those in Section 4.1 can be con-
structed for this setting.

• The teacher should not teach with Armi when x̄i >
x̄j , ∀j &= i. Similar to Section 4.2, if the agent is going
to pull Armi, the teacher should not pull Armi.
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• Do not teach if ∃i s.t. ni = 0. The same reasoning
from Section 4.4 applies here, as the learner will opti-
mistically explore its world.

• The teacher should never pull Armz. If we consider
Arm1–Armz − 1 as one arm with a complex distribu-
tion, its mean will still be higher than that of Armz.
Therefore, the reasoning from Section 4.3 applies if we
consider this complex arm as Arm1 and Armz as Arm2;
thus, the teacher should always avoid pulling Armz.

We hypothesize that it can also be advantageous to teach
with Armj for j < k even when ∃i < j s.t. x̄i > x̄j , similar
to Stone and Kraus’s result [15]. However, this result is left
for future research.

6. RELATEDWORK
The formal description of ad hoc team problems was pro-

posed by Stone et al. [13]. This research builds on work by
Stone and Kraus [15]. They introduced this formulation of a
cooperative multi-armed bandit with a teacher and a learner.
However, they consider the case with a known, finite number
of rounds. This research extends their results into the case
of infinite, discounted rewards. The trash collecting robots
in our motivating example in Section 2 was taken from Stone
and Kraus, who were inspired by ad hoc human teams such
as [7].

Stone et al. [14] studied an ad hoc team setting involving
cooperating with a best response teammate on a repeated
normal-form game. They provide several interesting theo-
retical results as well proposing an efficient empirical algo-
rithm for handling teammates with short memories. Bar-
rett et al. [2] also investigate ad hoc teams, but in the pur-
suit (or predator-prey) domain. They take an empirical ap-
proach and develop an agent that plans using Monte Carlo
Tree Search (MCTS) using a set of known models of possible
teammates.

Other investigations of ad hoc teams include Brafman
and Tennenholtz’s work [5] in which one agent teaches an-
other while engaging in a repeated joint task. However, they
mainly focus on the case where teaching is not costly, and
the teacher’s goal is to help the learner maximize the times it
chooses the best action. We consider the case where teaching
has a cost, and the teacher’s goal is to maximize the shared
payoffs. Another domain that has been investigated is that
of simulated robot soccer. Bowling and McCracken [4] inves-
tigate the effectiveness of ad hoc agents, comparing them to
inoperative and absent players. Their ad hoc team agent has
a playbook different from that of its teammates and tries to
independently choose plays that perform well with its team.

Jones et al. [9] investigate pickup teams working in the
treasure hunt domain. These teams can consist of hetero-
geneous robots, but they coordinate by using a communica-
tion protocol that they use to bid on desired roles. Another
empirical approach is given by Knudson and Tumer [11].
However, all of their agents are adaptive and each is given
a clear metric of how each of its actions affect the teams’
performance.

A large body of work exists for coordinating teams of
agents using standard protocols for communication and coor-
dination such as SharedPlans [8], STEAM [17], and GPGP [6].
Our work does not assume that such a protocol is known by

all the agents.
The multi-armed bandit problem has been studied exten-

sively [3], and several variations have been considered in
which there are multiple agents that can observe the actions
or outcomes of each other. Keller and Rady [10] investi-
gate a two-armed bandit with multiple players cooperating.
In this scenario, there is a risky arm that distributes lump-
sum payoffs according to a Poisson distribution. The agents
share a common cut-off for their belief about the expected
reward of the risky arm and either all pull the risky arm or
all choose the other arm. Aoyagi [1] focuses on a two-armed
bandit problem with multiple players that can only observe
the actions on other players rather than the outcome of these
actions. Under some restrictions of the arms’ payoff distri-
butions, he proves that all players will settle on the same
arm. Our research indicates that learning from other agents
is possible without explicit communication.

7. CONCLUSIONS AND FUTUREWORK
This paper presents an extension of theory to the cooper-

ative multi-armed bandit problem with infinite, discounted
rewards. We have studied in detail the case where a teacher
knows the true payoff distribution of all of the arms, and,
while embedded in the domain, it interacts with a teammate
that lacks this information. In this setting, teaching has a
cost, and we give insight into the trade-off between teaching
and exploitation. We show that teaching can be advanta-
geous, but that there are some guidelines that the teacher
should follow, such as not teaching by pulling the worst arm.

This paper opens up several avenues for future research.
It motivates research into stateful, infinite reward problems,
such as those commonly faced in reinforcement learning. In
addition, it spurs research into the trade-offs between teach-
ing, exploration, and exploitation. Furthermore, more re-
search into teammates with more information and the possi-
bility of limited communication is needed. From a high level,
we view these results as a small step towards the long-term
goal of fully general and robust ad hoc team agents.
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ABSTRACT
We study the combination of co-evolution and individual
learning in minority games (MGs). Minority games are sim-
ple models of distributed resource allocation. They are re-
peated conflicting interest games involving a large number
of agents. In most of the literature, learning algorithms and
parameters are evaluated under self-play. In this article,
we want to explore by means of an evolutionary algorithm
(EA) whether agents that are free to choose or change their
learning parameters can improve their individual welfare.
Furthermore, we are interested to see whether an increase
of the agents’ strategy space is beneficial to the entire popu-
lation. I.e., can such agents use the available resources more
efficiently or will the price of anarchy increase? Experiments
show that the heterogeneous setting can achieve outcomes
which are good from the viewpoint of the system, as well as
for the individual users. The average of the evolved learning
parameters are mostly reasonable values for the homoge-
neous setting. More importantly we show that algorithms
which achieve better results in a homogeneous setting may
be outcompeted when confronting other algorithms directly
in a heterogeneous setting.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent Systems; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search

General Terms
Algorithms, Performance, Economics

Keywords
minority game, congestion game, adaptation, reinforcement
learning, co-evolution, evolutionary algorithm

1. INTRODUCTION
In the Minority Game [4], a large number of agents re-

peatedly and simultaneously choose one of two sides. Only
agents on the minority side win. Hence, this is an anti-
coordination game: an individual must do the opposite of
the others in order to be successful. From the viewpoint of
the group, the more agents on the minority side, the better.

The MG is a simple model of the stock market where you
want to sell at the point where everyone else is buying, and

vice versa: the best time to buy shares is when everyone
is selling theirs. The MG also models other distributed re-
source allocation problems, such as grid computing [6] and
network routing. In grid computing jobs are submitted to
computational resources, without knowing the exact load of
each computer, or the time needed to process the jobs al-
ready in its queue. Obviously, you benefit if you can submit
your job to a machine which is less used. In network rout-
ing, long paths must be allocated to preserve a minimum
bandwidth for streaming video. These decisions are made
not knowing what actions other agents (routers and servers
in the case of network routing) are currently taking or will
take.

A slightly more general class of games are Congestion
Games [11]. Just as in Congestion Games, the cost of us-
ing a resource depends on the number of players using that
resource at the same time. Usually the cost increases accord-
ing to some simple function. In this article we will concen-
trate on MGs with two resources and consider three different
cost functions, see Section 2. The main difference between
MGs and CGs is that in Congestion Games, the actions of
agents correspond to subsets of resources instead of single
resources.

Apart from its usefulness as a model of many practical dis-
tributed resource allocation problems, the MG is also inter-
esting as a test-case or benchmark game for testing learning
algorithms, for several reasons. First, the MG is a repeated
game, allowing the application of online update rules which
include Learning Automata [9] and Q-Learning [13], both
reinforcement learning algorithms [12]. Second, the MG is
hard: it has no trivial solution. There is no best action,
and the outcome of each interaction depends fully on the
aggregate action of all players. Third, the number of play-
ers is high. Minority Games with hundreds of players are no
exception. This is in contrast to most popular benchmark
games in multiagent learning which are typically two-player
games: prisoners’ dilemma, matching pennies, battle of the
sexes, etc. Finally, many simple extensions have already
been proposed in literature: different payoff functions [4],
multiple resources [3, 7], agents exchanging information [10],
etc. These MG variations model more realistic distributed
resource allocation problems and allow to test different as-
pects of learning in a multiagent context. The details of the
MGs we study here are discussed in Section 2.

Previously, people have mostly been concerned with ho-
mogeneous populations where all agents, competing in the
same Minority Game, use the same learning algorithm and
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parameters [7, 6, 8, 3]. Separate experiments are done
for different values of the learning parameters and different
learning algorithms. In the end, group welfare (also called
‘volatility’ in MG literature) is compared.

We argue it makes more sense to study heterogeneous
populations and see whether group welfare can be main-
tained. A heterogeneous environment is a more natural set-
ting. For example in the stock market the only limits on
the traders strategies are their time, information and com-
putational constraints. So, any selfish agent – as we assume
stock traders and resource users normally are – will change
his strategy if he believes he would benefit.

Note that, in this article, we do not study the effects of
heterogeneous information as in [5] where agents have dif-
ferent information available. Instead, agents vary in learn-
ing strategy. In this article we look at two simple learning
schemes: Q-learning combined with ε-greedy action selec-
tion and Learning Automata (LA). Both are discussed in
Section 3. We choose these strategies for their simplicity
and applicability to many online learning problems. Conve-
niently, both algorithms make use of two learning parame-
ters in the range [0, 1]. We will vary these parameters be-
tween agents to create heterogeneous populations.

The experiments are divided into two parts. In the first
part (Section 4.3) all agents use the same learning algorithm
but may use different learning parameters. After each MG,
agents go through a selection and reproduction process. Se-
lection is based on individual fitness and ensures only well
performing agents remain in the population. This evolu-
tionary process is discussed in detail in Section 4.2. The
experiments will show that good system performance is still
achieved. We compare these results to some homogeneous
settings. In the second part (Section 4.4), we mix agents
with different learning algorithms. Here we show that the
algorithm which achieved better results in homogeneous set-
tings can still be outcompeted by a supposedly ‘weaker’ al-
gorithm for MGs.

Before discussing these experiments, we must define the
MG, more especially the variations we use and the learning
strategies applied.

2. MINORITY GAME
When Challet and Zhang, inspired by the El Farol Bar

problem [1], defined the MG [4], they also included a basic
learning strategy. In this explanation, we leave that out. In
Section 3 we will discuss the strategies we apply here.

The MG is played with a large but odd number of agents
N = 2k + 1 for some positive integer k. Each agent i can
choose between two possible actions ai, represented by 0
and 1. All agents select an action simultaneously without
any explicit information on the others’ choice. The number
of agents choosing action a at time t is denoted by #a(t).

Contrary to the original definition of Challet and Zhang [4]
the agents do not have access to a public list of previous
outcomes – the so-called history. The only information they
can use are the payoffs they receive after each action. In
this article we study three different payoff functions. For
convenience, all payoff functions return values between −1
and +1. The binary payoff function awards r = +1 to each
agent in the minority and r = −1 to those in the majority
(Equation 1).

ri(t) = − sgn(#ai(t)−N/2) (1)

Equation 2 is the linear equivalent of the one above. This
reward function gives higher payoffs if the minority is smaller.
This function gives the individuals more information about
the achieved outcome.

ri(t) = − 2
N

(#ai(t)−N/2) (2)

The third payoff function 3 embodies what seems socially
fair: socially better outcomes are awarded higher payoffs
and everyone always receives the same payoff. This payoff
scheme should push the group as a whole towards achieving
globally good results.

ri(t) = 1− 4
N

|#ai(t)−N/2| (3)

The system performs efficiently when at every round as
many agents as possible are on the minority side. Opti-
mally, k agents choose action 0 and k + 1 choose action 1,
or vice versa, as the game is symmetric in the actions. Any
reasonable agent strategy should result in a system where
#0(t) and #1(t) fluctuate around N/2 after some time.

The volatility V measures the systems’ performance as the
variance of #1(t) around the mean N/2 normalized to the
number of agents (see Equation 4).

V =
1

TN

T∑

t=t0

(#1(t)−N/2)2 (4)

A good system performance is one that is lower than 1/4,
which is what ‘non-learning’ or ‘randomly choosing’ agents
achieve, see Table 1. The same table shows optimal bounds
for V , W and F . These bounds are achieved when, at each
round of the MG, the maximum number of agents are in the
minority – k out of N = 2k + 1 – and all agents perform
equally well. Results in Table 1 hold for the binary payoff
function. The optimal bound for V and the V of the ‘non-
learning’ agents are independent of any payoff function.

For our purpose, we also define the welfare or fitness. The
welfare wi of agent i is the sum of his payoffs ri(t) he col-
lected over time. We denote the average fitness of a popula-
tion by W . Note that W is certainly negative for the binary
and linear payoff function (Equation 1 and 2 respectively).
At most k out of 2k + 1 agents can get a positive payoff.
Note the close relationship of average fitness W and volatil-
ity V . High volatility will coincide with low average fitness
and vice versa.

Finally, we define some notion of fairness F . For our pur-
pose, we would like high fairness to indicate that all agents
have very similar fitness. Low fairness should indicate there
is many difference between the welfare of the individuals.
We choose to define the fairness F as the inverse of the
standard deviation of the individual fitness wi:

F =

√
N

∑N
i=1(wi −W )2

(5)

This is clearly related to the spread in fitness between in-
dividuals. The inverse makes sure that higher values corre-
spond to fairer outcomes. By no means, we claim that this
is the only possible definition of fairness, but this one will
suffice our purpose here.

Next, we discuss the two reinforcement learning schemes
we apply here.
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3. REINFORCEMENT LEARNING
Reinforcement Learning (RL) agents solve problems us-

ing trial and error. Unlike in supervised learning, agents are
not told which actions or decisions are best. Instead, agents
receive a reward – which is scalar – after each action taken,
as an indication of the quality of their choice. They also
have (some) information about the state of their environ-
ment. The goal of the agent is to find an optimal policy. A
policy is a mapping from each state of the environment to
a probability distribution over the possible actions in that
state. The agent maximizes his total expected reward if he
takes all actions according to an optimal policy.

Since agents are not told which action to take, they should
balance exploration and exploitation. While the agent wants
to exploit his knowledge of the environment most of the time
in order to maximize his rewards, once in a while the agent
should explore a new action in order to discover actions that
are better than the best one found so far.

See the book of Sutton and Barto [12] for an overview
of RL. The two popular reinforcement learning algorithms
which we apply here are Q-learning and Learning Automata.

3.1 Q-Learning
One well-known RL-algorithm is Q-learning [13]. It maps

each state-action pair (s, a) to the total expected reward if
the agent applies action a in state s. One can prove that
Q-learning will find the optimal policy, i.e. the Q-values con-
verge to the true total expected reward provided that the en-
vironment is stationary [13]. Unfortunately, in a multiagent
setting the environment is non-stationary due to the pres-
ence of other agents who also learn and hence change their
behavior. Whereas in a stationary environment exploration
can be ignored once enough information has been collected,
in a non-stationary environment the agent has to continue
exploring in order to track changes in the environment.

In order to apply Q-learning to a MG, the rewards, state-
and action-space must be defined. The actions simply re-
fer to the resources of the game (0 and 1). The rewards
r ∈ [−1,+1] are defined by any of the payoff functions in
Section 2. Agents receive high rewards when they make good
choices, lower rewards result from bad choices. The agents
do not receive any extra information from the environment
apart from their rewards. This means agents cannot dis-
criminate between different states of the environment. As a
consequence, agents have a Q-value for each available action
and use the ‘stateless’ Q-learning update rule whenever they
receive a reward r after taking action a:

Qa ← Qa + α(r −Qa) (6)

In the above update rule, α ∈ [0, 1] represents the learning
rate.1 All Q-values are initially set to 0.
The update rule in Equation 6 only tells the agent how

to exploit but not how to explore. Therefore we need an
exploration strategy or action-selection rule like ε-greedy or
softmax. Here we choose the ε-greedy action-selection strat-
egy (where ε is small). The agent selects with probability ε
an action at random according to a uniform distribution and
with probability 1− ε he selects the action with the highest
Q-value (braking ties randomly).

1In the extreme case of α = 0, nothing is ever learned. In
the other extreme case where α = 1, Q-values only reflect
the last reward for the corresponding action.

Table 1: Some benchmarks with averages over 100
samples and standard deviations (preceded by ±).
For welfare W and fairness F higher is better, for
volatility V lower is better. Moreover, we con-
sider any volatility lower than 0.25 (see non-learning
agents) as good.
experiment V W F
optimal bound 0.52/N −1/N 1/0

= 0.00083 = −0.0033 = ∞
non-learning/random 0.25 −0.046 31.74
QL, α = 0.0 or ε = 1.0 ±0.0011 ±0.00012 ±0.23
homogeneous 0.011 −0.0084 45.5
QL, α = 0.1, ε = 0.01 ±0.00043 ±0.000086 ±7.69

3.2 Learning Automata
Learning automata [9] directly manipulate their policy,

which is a probability distribution over the actions. This
is contrary to Q-learning which updates Q-values and uses
those in combination with an action-selection strategy to
determine a policy.

Each time the agent takes an action a and receives a cor-
responding reward r, he updates the probability distribution
p over all actions according to following rules:

pa ← pa + αr(1− pa)− β(1− r)pa, (7)

pj ← pj − αrpj + β(1− r)(
1

n− 1
− pj) ∀j &= a. (8)

Here, n is the number of actions. The parameters α and β
(both in the range [0, 1]) are the reward and penalty learning
rate. In the literature, the values of α and β are mostly
restricted. For example, the scheme where β = 0 is called
Linear Reward Inaction and is often used. Here we allow
any combination of α and β. The reward r is assumed to be
in the range [0, 1]. Since our payoff functions return values
in the range [−1,+1], learning automata will first rescale the
payoffs to [0, 1].

4. EXPERIMENTS AND RESULTS
In the reported experiments all minority games are played

with N = 301 agents. They are run for 10000 rounds. Fit-
ness, volatility and other performance measures are taken
over the last 1000 rounds. The first 9000 rounds allow the
system to stabilize regardless of initial conditions.

4.1 Incentive to deviate
In a first experiment we check the hypothesis that an indi-

vidual agent can improve his fitness by applying a strategy
different from the other agents.

As an example: when all Q-learning agents use α = 0.1
and ε = 0.01 in a MG with the binary payoff function, sys-
tem and individual performance is already very good. Both
volatility V and average fitness W of these agents are much
better than those for non-learning agents, see Table 1 for the
figures. If one agent from that population uses a different
α (0.0 < α < 0.1), he can achieve a fitness which is even
better than the average of the population. We see similar
results when varying the exploration rate ε of one agent. For
ε smaller than what the group uses (ε < 0.01), an individual
can get better fitness than the group’s average.

Clearly there exists an incentive for an individual to change
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its learning parameters and we would like to know what hap-
pens if all agents are given the freedom to change. There-
fore we set up a simple evolutionary algorithm (EA). Our
hypothesis is that selfishness will steer the agents toward
learning parameters which not only yield good individual
payoff but also good system performance such that the en-
tire population can benefit.

4.2 Evolutionary Algorithm
An evolutionary algorithm is inspired by natural selection

in biology. Species which are more fit (i.e., more adapted
to the environment) are able to reproduce faster. Less fit
species will decrease in numbers and may eventually go ex-
tinct. The fitness of an individual is largely determined by
its genes. And it is the information in these genes that an
individual passes on to its offspring. The overall effect of
natural selection is that genes with positive effects on in-
dividuals will pass on to the next generation, genes with
negative effects may not, since they cause the individual to
reproduce less or even die before reproducing. The primary
source of diversity in genes of a population is mutation. Any
mutation is random and its effect depends on the environ-
ment. It is natural selection that will steer the evolution in
a particular direction.

EAs can also serve as a model of social learning. In hu-
man or animal societies, individuals may learn by copying
the behavior of ‘better performing’ or higher regarded indi-
viduals. In such an imitation process very fit behavior will
propagate faster through the population and will be used by
more individuals as opposed to unfit behavior.

The basic evolution strategy [2] called (µ + λ)-ES is the
following:

1. At the start, generate N individuals at random.

2. Determine the fitness of all N individuals.

3. Select the µ < N best individuals as parents for the
next generation.

4. Pick λ = N − µ individuals from the µ parents at
random with replacement and weighed by their fitness.
Create for each parent one offspring. The offspring is a
mutation of the parent. The new generation consists of
the µ best individuals of the previous generation and
the λ offspring.

5. Repeat step 2 to 4 until a maximum number of gener-
ations has been reached.

In our case an individual will be fully determined by its
learning parameters – α and ε for Q-learning, α and β for
learning automata. Both are real-valued numbers in the
range [0, 1]. The initial population’s parameters are chosen
at random according to a uniform distribution over [0, 1].
The fitness of an individual will be determined by a MG
among the entire population: N = 301 agents picking one
of two actions repeatedly for 10000 rounds. The more an
individual chose the minority action during the last 1000
rounds, the higher his fitness.

We create λ = 7 offspring at each generation. Each off-
spring inherits the learning parameters of his parent with
some small Gaussian noise added. The noise is drawn at
random from a normal distribution with mean µ = 0.0 and
variance σ2 which starts at 0.12 and slowly decreases to 0.0

Table 2: Results after 1000 generation of evolving
learning parameters. For each figure, the average
over 30 samples is shown and below it the standard
deviation preceded by ±. For both payoff functions
the best figures are indicated in bold. For more
details see the text.

binary payoff function linear payoff function
QL LA QL LA

α 0.050 0.91 0.076 0.89
±0.0080 ±0.021 ±0.013 ±0.023

ε/β 0.0021 0.00011 0.00092 0.052
±0.00052 ±0.0000093 ±0.00025 ±0.0053

V 0.0045 0.0021 0.31 0.099
±0.0013 ±0.0012 ±0.49 ±0.0080

W −0.0050 −0.0034 −0.0041 −0.0013
±0.00046 ±0.000024 ±0.0067 ±0.00011

F 13.08 1.37 133.14 504.66
±9.18 ±0.30 ±119.21 ±77.93

from generation to generation. The noise is drawn indepen-
dently for both parameters. The parameter space is consid-
ered to be torus shaped, i.e., if a mutation creates a value
outside [0, 1] it is wrapped to the other side. In another ex-
periment we clamped such mutations to the bounds 0.0 and
1.0, causing no qualitative differences.

At the start of every MG, the Q-values, fitness, etc. are
all reset to their initial value. Only the learning parameters
are passed on from one generation to the next.

4.3 Evolving Learning Parameters
In these experiments, all agents use the same learning al-

gorithm but have different learning parameters which evolve
over time. We look at the 3 different payoff functions and
compare the evolutionary setting with the homogeneous one.
The learning parameters used in the homogeneous setting
are taken from what is evolved on average after 1000 gener-
ations.

For the binary payoff function, evolution always reaches a
system of very low volatility, both for Q-learning and learn-
ing automata (see Table 2). Very similar learning parame-
ters emerge each time and these yield almost equally good
results when applied in the homogeneous setting, see Ta-
ble 3. Only the fairness among learning automata seems to
be a concern. We will come back to this in Section 4.4.

For the linear payoff function, only learning automata
seem to be able to evolve reasonably low volatility (see Ta-
ble 2). This is unexpected, the linear payoff function holds
more information for the agents, and hence should make it
easier to reach good resource usage. Again the application
of the average evolved parameters in a homogeneous set-
tings yields similar results. Except for Q-learning, there the
results are even worse. For an other combination of param-
eters (α = 0.1 and ε = 0.01), better but far from satisfying
results could be achieved.

The ‘social’ payoff function (Equation 3) yields particu-
larly bad results. The learning parameters seem to make
random walks while evolving and nothing is ever learned.
This makes sense. As all agents perform equally well, nat-
ural selection is unable to push the group in any partic-
ular direction, even though the payoff function still awards
higher payoffs for better distributions. For the homogeneous
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Table 3: Results for a homogeneous setting where
learning parameters are fixed to what was evolved
during the experiments reported in Section 4.3, see
Table 2. For each figure, the average over 30 sam-
ples is shown and below it the standard deviation
preceded by ±. For both payoff functions the best
figures are indicated in bold.

binary payoff function linear payoff function
QL LA QL LA

α 0.050 0.91 0.076 0.89
ε/β 0.0021 0.00011 0.00092 0.052
V 0.0050 0.0025 5.42 0.10

±0.0021 ±0.0012 ±4.23 ±0.0047
W −0.0051 −0.0034 −0.072 −0.0013

±0.00053 ±0.000021 ±0.056 ±0.000064
F 21.21 1.24 94.83 591.69

±12.26 ±1.52 ±89.13 ±61.86

Figure 1: Evolution of the number of Q-learning
agents for binary and linear payoff functions.

setting, we did find parameters for the LA (α = 0.2 and
β = 0.001) that from time to time yield low volatility.

4.4 Competing Learning Algorithms
When comparing results from the previous experiments

between the different learning algorithms, we see that learn-
ing automata achieve a lower volatility, both for the binary
and for the linear payoff function. We leave the third payoff
function out for these experiments. In most of the litera-
ture on MGs, one would hence consider LA to be a better
learning algorithm MGs.

Following experiments show however that, when both al-
gorithms compete directly, i.e. play in the same MGs and un-
dergo natural selection, Q-learning individuals can achieve
higher individual fitnesses, reproduce faster and finally take
over the entire population, see Figure 1.

Again, we start from random learning parameters and
these are evolved in the same way as in previous experi-
ments. Half of the population uses Q-learning and the other
are learning automata.

Figure 2: Evolution of the Q-learning agents’ learn-
ing parameters for linear payoff functions.

Using the binary payoff function, the LA are outcompeted
from the start and steadily disappear from the population
(solid line in Figure 1). The low fairness in the experiments
from Section 4.3 already showed that the same LA automata
are always on the winning side and others always on the
losing side. The parameters to which they evolve (α high
and β almost 0) is preventing them to be adaptive. The LA
scheme where β = 0.0, also called Linear Reward Inaction,
is known for its convergence towards pure strategies (the
probability for one particular action becomes 1.0 and that
action gets selected all the time from then on).

In the experiments from Section 4.3 with the linear payoff
function, LA evolved a higher β (0.052) and thus are ex-
pected to be more responsive. Until generation 50 we see
that many Q-learning agents get replaced by LA. Later, the
remaining Q-learning agents seem to have evolved efficient
learning parameters (see Figure 2) and yet again the LA are
outcompeted. Once the LA have gone extinct the Q-learning
agents evolve again to the same parameters of Section 4.3
and actually, the system performance deteriorates.

5. CONCLUSIONS
We first showed there is an incentive for an agent to indi-

vidually change strategy and to use a different strategy from
that of the group even if the system is already in an efficient
regime.

When all agents can change their learning parameters
they may still reach efficient resource usage. Moreover the
evolved parameters work well in the homogeneous setting.
In cases were efficient schemes were not evolved, it was also
hard (or impossible) to ‘manually’ discover parameters that
give reasonable results for the homogeneous setting.

We note that the payoff function has a huge impact on
the efficiency of natural selection. Differentiating between
‘good’ and ‘bad’ choices or behavior is definitely necessary.
The ‘social’ payoff function which rewards the entire group
for reaching good distributions over the resources, does not
distinguish between individuals and hence is useless for nat-
ural selection. Surprisingly, giving agents more information
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is not necessarily an advantage for the group. The linear
payoff function holds more information for the agents. This
results in Q-learning evolving a very low exploration prob-
ability (ε < 0.001). These agents are effectively exploiting
too much to achieve low volatility.

From the last experiments (Section 4.4) we conclude that
comparing learning algorithms under self-play may yield very
different results than comparing under direct competition.
These kinds of parameter learning and algorithm comparison
techniques are quite interesting for selecting learning algo-
rithms and parameters for agents in uncooperative games.
We believe these techniques can easily be extended to MGs
with more resources and consequently CGs.
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ABSTRACT
We address the challenges of evaluating the fidelity of au-
tonomous agents that are attempting to replicate human
behaviors. This is a fundamental issue in the emerging inter-
section of artificial intelligence and social science motivated
by problems such as training in virtual environments and
large-scale social simulation. Our specific interest focuses
on emulating human strategic behavior over time, by learn-
ing this behavior from data. We introduce and investigate
the Social Ultimatum Game, an extension of the classical
Ultimatum bargaining game, and discuss the efficacy of a
set of metrics in comparing various autonomous agents to
human behavior collected from experiments.

Categories and Subject Descriptors
I.1.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems

General Terms
Algorithms, Economics, Experimentation

Keywords
Learning, Adaptation, Metrics, Multi-Agent Systems, Game
Theory, Ultimatum Game, Mathematical Models of Human
Behavior

1. INTRODUCTION
Straightforward “optimality” may not always be our goal as
agent designers. In many domains, it is more important
that the agent behavior realistically simulates human be-
havior, rather than maximizing some domain-specific payoff
function. In such cases, we can attempt to learn the agent
behavior from a collection of traces of actual human behav-
ior. Using machine learning techniques suited for temporal
data, we could identify predictive patterns in the data set or
fit a set of general parameters in order to produce a genera-
tive model of agent behavior. The resulting set of traces of
agent behavior must then be evaluated for similarity to the
human behavior being emulated, which itself is a non-trivial
problem.

In traditional AI, the classical Turing Test relies on human
evaluation to judge the verisimilitude of the conversation
produced by the autonomous agent to human conversation.
In more restricted problems, such as classification, we are
satisfied when a machine consistently produces the correct

label (a perfect match), given a test data point. In this pa-
per, we are concerned with domains falling somewhere in
the middle, where an agent’s human-like behavior will not
necessarily produce a perfect match to some predefined stan-
dards, since both are a set of traces that are responses to
environmental stimuli over time, but where we would prefer
not to rely exclusively on human judgement to determine
whether an agent’s outputs are “close” to real human behav-
ior.

In particular, we are interested in multi-agent domains where
humans make sequential decisions over time, such as in a
multi-round negotiation. Building a realistic autonomous
agent in this type of domain has practical applications in
many other areas, for example training in virtual environ-
ments [13], large-scale social simulation [3], and adversarial
modeling [1]. In the emotional agents community, the de-
gree of realism is typically evaluated by a human judge [9].
In the machine learning and reinforcement learning com-
munity, agent “goodness” is typically evaluated relative to
optimal behavior, using a metric like expected reward. How-
ever, realistic human behavior is often not optimal, and in
many of the domains of interest, the notion of optimality is
ill-defined.

Optimality of one agent in a multi-agent domain is depen-
dent on the other agents. If a machine’s assumptions about
the other agents is incorrect, then its behavior, even if opti-
mal given those assumptions, could be wildly different from
normal human behavior. We will see an example of this
shortly, in a variant of the classic Ultimatum game. Since
the validity of these assumptions is an essential part of what
must be evaluated, optimality based on the assumptions is
not a good metric for realism. We need a different approach.

Human data in multi-agent domains is getting easier to col-
lect, given the current state of access to the Internet and
online interaction. Thus, we can obtain baseline collections
of behavior trajectories that describe human play. The chal-
lenge is to find a way to compare collections of traces pro-
duced by autonomous agents with this existing baseline, in
order to determine which agents exhibit the most realistic
behavior.

In this paper, we investigate these issues in the context of the
Social Ultimatum Game (SUG), and populate this frame-
work with a set of autonomous agents and a set of potential
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metrics. SUG is a multi-agent multi-round extension of the
Ultimatum Game [6], which has been a frequently studied
game over the last three decades as a prominent example
of how human behavior deviates from game-theoretic pre-
dictions that use the “rational actor” model. Data gath-
ered from people playing SUG was used to create various
classes of autonomous agents that modeled the behaviors of
the individual human players. We then created traces from
games with autonomous agents emulating the games that
the humans played. We develop several metrics to compare
the collections of traces gathered from games played by hu-
mans and games played by the autonomous agents. From
this analysis, it becomes clear that human behavior contains
unique temporal patterns that are not captured by the sim-
pler metrics. In SUG, this is revealed in the likelihood of
reciprocity as a function of the history of reciprocity. The
key implication is that it is critical to retain the temporal
elements when developing metrics to evaluate the efficacy of
autonomous agents for replicating human strategic behavior
in dynamic settings.

2. THE SOCIAL ULTIMATUM GAME
To ground our subsequent discussion, we begin by intro-
ducing the Social Ultimatum Game. The classical Ulti-
matum Game, is a two-player game where P1 proposes a
split of an endowment e ∈ N to P2 who would receive q ∈
{0, δ, 2δ, . . . , e− δ, e} for δ ∈ N. If P2 accepts, P2 receives q
and P1 receives e − q. If P2 rejects, neither player receives
anything. The subgame-perfect Nash or Stackelberg equilib-
rium has P1 offering q = δ (i.e., the minimum possible offer),
and P2 accepting, because a “rational”P2 should accept any
q > 0, and P1 knows this. Yet, humans make offers that
exceed δ, make “fair” offers of e/2, and reject offers greater
than the minimum.

To represent the characteristics that people operate in so-
cieties of multiple agents and repeated interactions, we in-
troduce the Social Ultimatum Game. The players, denoted
{P1, P2, . . . , PN}, play K ≥ 2 rounds, where N ≥ 3. The
requirement of having at least three players in necessary to
give each player a choice of whom to interact with. In each
round k, every player Pm chooses a recipient Rk

m and makes
them an offer qkm,n (where n = Rk

m). Each recipient Pn

then considers the offers they received and makes a decision
dkm,n ∈ {0, 1} for each offer qkm,n to accept (1) or reject (0)
it. If the offer is accepted by Pm, Pm receives e− qkm,n and
Pn receives qkm,n, where e is the endowment to be shared. If
an offer is rejected by Pn, then both players receive noth-
ing for that particular offer in round k. Thus, Pm’s reward
in round k is the sum of the offers they accept (if any are
made to them) and their portion of the proposal they make,
if accepted:

rkm = (e− qkm,n)d
k
m,n +

∑

j=1...N,j !=m

qkj,mdkj,m (1)

The total rewards for Pm over the game is the sum of per-
round winnings, rm =

∑K
k=1 r

k
m. A game trajectory for Pm

is a time-series of proposed offers, Ok
m = (Rk

m, qkm,n, d
k
m,n)

and received offers, Ok
n,m = (Rk

n, q
k
n,m, dkn,m). At time k, the

trajectory for Pm is its history of offers made and received:
T k
m = (Ok

m, {Ok
n,m}n, Ok−1

m , {Ok−1
n,m}n, . . . , O1

m, {O1
n,m}n). As-

suming no public information about other players’ trajecto-
ries, T k

m includes all the observable state information avail-
able to Pm at the end of round k.

3. METRICS
Let Cm be the collection of trajectories Pm produces by tak-
ing part in a set of Social Ultimatum Games. In other do-
mains, these traces could represent other interactions. Our
goal is to evaluate the resemblance of a set of human trace
data C to other sets of traces C̃, namely those of autonomous
agents. We need a metric that compares sets of multi-
dimensional time series: d(C, C̃). Standard time-series met-
rics such as Euclidean or absolute distance, edit distance,
and dynamic time warping [11] are not appropriate in this
type of domain.

One challenge arises because we are interested in the un-
derlying behavior that creates the trajectories rather than
superficial differences in the trajectories themselves. If we
can collapse a collection of traces C to a single probability
distribution Q, by aggregating over time, then we can define
a time-collapsed metric,

d(C, C̃) = KL(Q||Q̃) +KL(Q̃||Q) (2)

where KL denotes the Kullback-Leibler divergence. The sum
enforces symmetry and nonnegativity. Time-collapsed met-
rics for SUG include:

• Offer Distribution. Let QO be the distribution of of-
fer values {qkm,n} observed over all traces and all play-
ers.

• Target-Recipient Distribution. Let QR denote the
likelihood that a player will make an offer to the kth

most likely recipient of an offer. This likelihood is non-
increasing in k. In a 5-person game, a single player
may have an target-recipient distribution that looks
like {0.7, 0.1, 0.1, 0.1} which indicates that they made
offers to their most-targeted partner 7 times more of-
ten than their second-highest-targeted partner. We
can produce QR by averaging over all games to char-
acterize a player and further average over all players
to characterize a population.

• Rejection Probabilities. For each offer value q, we
have a Bernoulli distribution QBq that captures the
likelihood of rejection by averaging across all players,
games and rounds in a collection of traces. We then
define a metric:

dB(C, C̃) =
10∑

q=0

KL(QBq ||Q̃Bq ) +KL(Q̃Bq ||QBq ).

We can also define time-dependent metrics that acknowl-
edge that actions can depend on observations of previous
time periods. One prominent human manifestation of this
characteristic is reciprocity. We define two time-dependent
metrics based on reciprocity:
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• Immediate Reciprocity When a player receives an
acceptable offer from someone, they may be more in-
clined to reciprocate and propose an offer in return
in the next round. We can quantify this p(Rk+1

m =
n|Rk

n = m) across all players and games in a collection
of traces. This probability defines a Bernoulli distri-
bution QY from which we can define a metric dY as
before.

• Reciprocity Chains Taking the idea of reciprocity
over time further, we can calculate the probability that
an offer will be reciprocated, given that a chain of reci-
procity has already occurred. For example, for chains
of length c = 2, we p(Rk+1

m = n|Rk
n = m,Rk−1

m = n);
for c = 3, we calculate p(Rk+1

m = n|Rk
n = m,Rk−1

m =
n,Rk−2

n = m). As before, these probabilities can be
used to define a Bernoulli distribution QYc for each
length c. Then, for some L, we define

dYL (C, C̃) =
L∑

c=1

KL(QYc ||Q̃Yc) +KL(Q̃Yc ||QYc).

We expect that the longer a pair of players reciprocate, the
higher the likelihood that they will continue doing so. The
probabilities of how likely humans are to reciprocate can be
obtained from the experimental data.

4. AUTONOMOUS AGENTS
In this section, we describe various agent models of behav-
ior. We first apply traditional game-theoretic analysis to
the Social Ultimatum Game to derive the “optimal” behav-
ior under rational actor assumptions. We then describe two
distribution-based agents that do not model other agents
but are capable of incorporating human behavior data. Fi-
nally, we describe an adaptive agent that incorporates some
aspects of human behavior such as fairness and reciprocity.

4.1 Game-Theoretic Agents
Let strategies be characterized by the statistics that they
produce in steady-state: the distribution of offers made by
each player, where pgm(n, q) denotes the likelihood that Pm

will give an offer of q to Pn, and the distribution of offers
accepted by each player, where pam(n, q) denotes the likeli-
hood that Pm will accept an offer of q from Pn. Then, the
expected reward for Pm per round in steady-state is rm =

∑

n,q

qpgn(m, q)pam(n, q) +
∑

n,q

(e− q)pgm(n, q)pan(m, q) (3)

where
∑

n,q p
g
m(n, q) = 1, ∀m, as the total outgoing offers

must total one offer per round, and the acceptance likeli-
hoods are pam(n, q) ∈ [0, 1], ∀m,n, q. A player maximizing
these rewards will modify their offer likelihoods {pgm(n, q)}
and acceptance likelihoods {pam(n, q)}, given those of other
players. A player can create the desired statistics by playing
a stationary mixed strategy with the desired likelihoods. To
optimize the offer likelihoods, Pm sets

pgm(n, q) > 0, ∀n ∈ N g ⊂ argmax
n

max
q

(e− q)pan(m, q)

such that
∑

n,q p
g
m(n, q) = 1, and pgm(n, q) = 0, otherwise.

Thus, in equilibrium, Pm will make offers to those agents
whose acceptance likelihoods yield the highest expected pay-
off.

Proposition. In the Social Ultimatum Game, accepting all
offers is not a dominant strategy.

We first note that players make offers to the players and of
the values that maximize their expected rewards. Thus, for
Pn to receive an offer from Pm, it must be the case that
(e− q)pam(n, q) is maximized for Pm over n and q, given P ′

ns
choice of pam(n, q). Let us now assume that

pam(n, q) = 1 ∀q ≥ q,m, n (4)

pam(n, q) = 0, ∀q < q,m, n (5)

for all m,n and q > δ. This says that all players accept of-
fers above some minimum threshold that is greater than the
minimum offer and never accept offers below that threshold.
Let us further assume the case that all offers are made uni-
formly among players. Under these conditions, each player
gains q per round in rewards from incoming offers. If Pm

was to switch to the strategy of accepting all offers of value
δ, then all players would see an expected value of (e− δ) of
making all offers to Pm which would result in Pm gaining
(N −1)δ in rewards per round. We note that it is not neces-
sarily the case that (N −1)δ ≥ q, thus the “greedy” strategy
is not dominant in the Social Ultimatum Game. !

Consider the case where all players accept only (e − δ) or
above in a game where e = 10 and N = 5. Switching to the
“greedy” strategy would reduce gains from receiving offers
from 9 per round to 4 per round. This rationalizes the idea
that getting fewer high value offers can be more valuable
than a lot of low offers.

Proposition. In the Social Ultimatum Game, Nash equilib-
rium outcomes only happen when players employ strategies
of the form “greedy’ strategies, where

pgm(n, q) = 0, ∀q > δ,m, n, pam(n, δ) = 1, ∀m,n, (6)

i.e.,“greedy” strategies where players only make the mini-
mum offers of δ, and all players accept all minimum offers.

Given the characterizations above, if Pm was to switch to
the strategy where

pam(n, q − 1) = 1, ∀n, (7)

then all players would make all offers to Pm who would gain
(N−1)(q−1) per round incoming offers which is greater than
q, for N ≥ 3. Thus, any strategy that can be “undercut” in
this manner cannot yield a Nash equililibrium outcome. We
note that if we relax the assumption that offers are made uni-
formly among players that maximize expected reward from
outgoing offers, then there will exist some player who will be
making at most q per round, and that player will still have
incentive to“undercut”. By a similar argument, if all players
are accepting a particular value of q, then the likelihood of
accepting that offer will gravitate to 1. Thus, all players,
will be driven down to accepting all offers q = δ. Given,
this players will only make offers for q = δ, and thus, the
“greedy” strategy is the only Nash equilibrium. !
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It is interesting that this outcome, while similar to the Ulti-
matum Game, is not due to the first player leveraging their
position as the offerer and being “greedy”, but instead from
the “rational” players competing to maximize gains from re-
ceived offers.

4.2 Distribution-Based Agents
One way to create agents that satisfy a set of metrics is to
use the metrics to generate the agent behavior. Using only
time-collapsed metrics, one could create a distribution-based
agent (DBA) as follows. Learn distributions of offer value,
target recipient and rejection percentage from human data.
Find the appropriate target-recipient distribution based on
number of participants and assign agents to each position
(i.e., most likely to least likely). In offer phases of each
round, choose a target by sampling from the target-recipient
distribution and an offer value by sampling from the offer
distribution. For received offers, decide via Bernoulli trial
based on the rejection percentage for that offer value.

The DBA has no notion of reciprocity. We also investi-
gated a class of distribution-based reciprocal agents (DBRA)
which behave like the DBA agents in all aspects other than
target selection. If DBRA agents receive an offer it will
decide to reciprocate based on a reciprocation percentage
that is learned from human data. If multiple offers are re-
ceived, the target is chosen using a relative likelihood based
on the target-recipient distribution. Similarly, if it doesn’t
receive any offers, it uses the target-recipient distribution.
While the distribution-based agents act on the basis of data
of human play, they do not have models of other agents and
consequently execute an open-loop static policy. The follow-
ing model introduces an adaptive model that is not based
simply on fitting the metrics.

4.3 Adaptive Agents
In order to create adaptive agent models of human play-
ers for the Social Ultimatum Game, we need to incorporate
some axioms of human behavior that may be considered “ir-
rational”. The desiderata that we address include assump-
tions that people will

1. start with some notion of a fair offer,

2. adapt these notions over time at various rates based
upon their interactions,

3. have models of other agents, and

4. choose the best option while occasionally exploring for
better deals.

Each player Pm is characterized by three parameters: α0
m : Pm’s

initial acceptance threshold, βm : Pm’s reactivity and γm : Pm’s
exploration likelihood

The value of α0
m ∈ [0, e] is Pm’s initial notion of what con-

stitutes a “fair” offer and is used to determine whether an
offer to Pm, i.e., qkn,m, is accepted or rejected. The value of
βm ∈ [0, 1] determines how quickly the player will adapt to
information during the game, where zero indicates a player
who will not change anything from their initial beliefs and

one indicates a player who will solely use the last data point.
The value of γm ∈ [0, 1] indicates how much a player will
deviate from their “best” play in order to discover new op-
portunities where zero indicates a player who never deviates
and one indicates a player who always does.

Each player Pm keeps a model of other players in order
to determine which player to make an offer to, and how
much that offer should be. The model is composed as fol-
lows: ak

m,n : Pm’s estimate of Pn’s acceptance threshold;
āk
m,n : Upper bound on ak

m,n ; and ak
m,n : Lower bound on

ak
m,n. Thus, Pm has a collection of models for all other play-

ers {[ak
m,na

k
m,nā

k
m,n]}n for each round k. The value am,n is

the Pm’s estimate about the value of Pn’s acceptance thresh-
old, while ak

m,n and āk
m,n represent the interval of uncer-

tainty over which the estimate could exist. Each player Pm

initializes these values as follows:

• a0
m,n = αm

• āk
m,n = &e/2'

• ak
m,n = 0

This denotes that each player begins with the assumptions
that other players in the game (1) have acceptance thresh-
olds that are the same as theirs, (2) will always accept an
equal split of the endowment, and (3) may be willing to
accept an arbitrarily low offer.

During the course of the game, each player will engage in
a variety of actions and updates to their models of agents.
Below, we present our model of how our adaptive agents
address those actions and model updates. For simplicity, we
will assume that δ = 1.

4.3.1 Making Offers
In each round k, Pm may choose to make the best known of-
fer, denoted q̃km, or explore to find someone that may accept
a lower offer. If there are no gains to be made from explor-
ing, i.e., the best offer is the minimum offer (q̃km = δ = 1),
a player will not explore. However, if there are gains to
be made from exploring, with probability γm, Pm chooses a
target Pn at random and offers them qkm,n = q̃km − 1. With
probability 1− γm, Pm will choose to exploit. The target is
chosen from the players who have the lowest value for offers
they would accept, and the offer is that value:

qkm,n = &ak
m,n − ε' where n ∈ arg min

ñ !=m
&ak

m,ñ' (8)

The previous equation characterizes an equivalence class of
players from which Pm can choose a target agent. The ε pa-
rameter is used to counter boundary effects in the threshold
update, discussed below. The target agent from the equiv-
alence class is chosen using proportional reciprocity, by as-
signing likelihoods to each agent with respect to offers made
in some history window.

4.3.2 Accepting Offers
For each offer qkm,n, the receiving player Pn has to make a
decision dkm,n ∈ {0, 1} to accept or reject it, based on its
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threshold:

If qkm,n ≥ &αk
m − ε', then dkm,n = 1, else dkm,n = 0 (9)

4.3.3 Updating Acceptance Threshold
The acceptance threshold is a characterization of what the
agent considers a “fair” offer. Once an agent is embedded
within a community of players, the agent may change what
they consider a “fair” offer based on the received offers. We
model this adaption using a convex combination of the cur-
rent threshold and the offers that are received, with adap-
tation parameter βm. Let the set of offers that are received
be defined as: Rk

m = {qki,j : j = m, qki,j > 0}. If |Rk
m| ≥ 1,

then αk+1
m =

(1− βm)|R
k
m|αk

m +
(1− ((1− βm)|R

k
m|)

|Rk
m|

∑

i

qki,m (10)

If |Rk
m| = 0, then αk+1

m = αk
m. Thus, offers higher than your

expectation will raise your expectation and offers lower than
your expectation will lower your expectation at some rate.

4.3.4 Updating Threshold Estimate Bounds
As a player makes an offer qkm,n and receives feedback on
the offer dkm,n, they learn about Pn’s acceptance threshold.
Using this information, we can update our bounds for our
estimates of their threshold, with the following rules.

If you make an offer and it is rejected, then the lower bound
for the acceptance threshold for that player must be at least
the offer that was rejected:

qkm,n > 0, dkm,n = 0 ⇒ ak+1
m,n = max{qkm,n, a

k
m,n} (11)

If you make an offer and it is accepted, then the upper bound
for the acceptance threshold for that player must be at most
the offer that was rejected:

qkm,n > 0, dkm,n = 1 ⇒ āk+1
m,n = min{qkm,n, ā

k
m,n} (12)

The next two conditions occur because acceptance thresh-
olds are dynamic and the bounds for estimates on thresholds
for other players may become inaccurate and may need to
be reset. If you make an offer, it is rejected and that offer
at least your current upper bound, then increase the up-
per bound to the “fair” offer that you expect that the other
player will accept:

qkm,n > 0, dkm,n = 0, qkm,n ≥ āk
m,n ⇒ āk+1

m,n = &e/2' (13)

If you make an offer, it is accepted and that offer is lower
than your current lower bound, then decrease the lower
bound to zero:

qkm,n > 0, dkm,n = 1, qkm,n ≤ ak+1
m,n ⇒ ak+1

m,n = 0 (14)

4.3.5 Updating Threshold Estimates
Once the threshold bounds are updated, we can modify our
estimates of the thresholds as follows. If the player accepts
the offer, we move the estimate of their threshold closer to
the lower bound and if the player rejects the offer, we move
our estimate of their threshold closer to the upper bound

using a convex combination of the current value and the
appropriate bound as follows.

dkm,n = 1 ⇒

ak+1
m,n = min{βm ak+1

m,n + (1− βm)ak
m,n, ā

k+1
m,n} (15)

dkm,n = 0 ⇒

ak+1
m,n = max{βm āk+1

m,n + (1− βm)ak
m,n, a

k+1
m,n + 2ε} (16)

The min and max operators ensure that we don’t make un-
intuitive offers (such as repeating a just rejected offer), if our
adaptation rate is not sufficiently high. The adaptive agent
described above fulfills the properties of the desiderata pre-
scribed to generate behavior that is more aligned with our
expectations in reality.

5. EXPERIMENTS
Thus far we have introduced several autonomous agent mod-
els, and metrics to evaluate their verisimilitude to actual hu-
man behavior. In this section, we first discuss the collection
of human data, and the use of this data to fit the described
agent models. We then evaluate the agent performance us-
ing our proposed metrics.

5.1 Human Play
Data was collected from human subjects recruited from un-
dergraduates and staff at the University of Southern Cali-
fornia. In each round, every player is given the opportunity
to propose a $10 split with another player of their choos-
ing. Games ranged from 20 to 50 rounds. A conversion
rate of 10 ultimatum dollars to 25 U.S. cents was used to
pay participants, i.e., $5 per 20 rounds per player in an
egalitarian social-welfare maximizing game, leading to total
U.S. denominated splitting opportunities of $5 per player
per game. Each game lasted approximately 20 minutes, once
regulations and training were completed. The subjects par-
ticipated in organized game sessions and a typical subject
played three to five games in one session. Between three
and seven players participated in each game. During each
session, the players interacted with each other exclusively
through the game’s interface on provided iPads, shown in
Figure 1. No talking or visual communication was allowed.
The rules of the game were as outlined in Section 2.

As shown in Figure 1, players were also randomly assigned
an avatar from one of two “cultures”: monks or warriors.
Monk avatars tend to look similar, while warriors have more
individualistic appearances. Names for each cultures also
follow a naming convention. We were interested whether
such small cultural cues would have any noticeable effect on
game behavior – thus far this does not appear to be the
case. If anything, there is a slight tendency for all players,
regardless of culture, to make offers to warriors, perhaps
because their avatars are more eye-catching and memorable.

The collected data includes every GUI command input by
each player, with corresponding timestamp. For example,
this includes not only the offers made and accepted, but
also provides information about length of time a player de-
liberated about an offer, and occasions where a player may
have changed his mind about the recipient of an offer or the
amount of an offer.
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Figure 1: The Social Ultimatum Game Interface

After each game, a written survey was completed by each
participant. They were asked to provide answers regarding
their own game play strategies during the game, the ob-
served strategies of the other players, and any additional
comments. We have collected data from 27 human subject
games thus far. In this paper, we focus on the seven 5-person
games in the dataset. By restricting our attention to five-
player games, we avoid biases that may be introduced if we
attempted to normalize the data from the other games to
reflect a five-person composition. Analysis on the games of
other sizes yields similar results.

5.2 Autonomous Agents
To create the Distribution-Based Agent and Distribution-
Based Reciprocal Agent using the collected data, we cal-
culated the appropriate distributions (offer value, rejection
percentage by value, targeted-recipient) by counting and av-
eraging over all games and all players. The agents then
selected target-recipients and offers based on these distri-
butions, and made their acceptance decisions based on the
rejection-by-value distributions.

For the Adaptive Agents, we analyzed the traces of each
game, and estimated game-specific α,β, γ parameters of each
of the participating players, as follows. For each player Pm

in the game,

• αm : This is set as the player’s first offer in this game.

• βm : When a player decreases his offer to a specific
player from q1 to q2 after K steps (not necessarily con-
secutive), we find and store the best β value such that
K applications of βq2 + (1 − β)q1 yields a result less
than q1+q2

2 (so that the next offer should be closer to
q2 then it is to q1). We then take βm to be this stored
β value.

• γm : This is the likelihood that a player’s offer is less
than the minimum known accepted offer, where the
minimum accepted offer at a given round k is the min-
imum offer known to be accepted by any player at time
k − 1.

Having estimated the population parameters of each game,

we then use them as input to create an autonomous agent for
each player, and simulate each game ten times to produce
ten traces. Within each of these games, each of the five
players uses the parameters corresponding to one of the five
original human players.

6. EVALUATION
These experiments and simulations result in a collection of
game traces for each of the five types of agent discussed:
Human, Adaptive, DBA, DBRA, and Game-theoretic (GT).
Table 1 shows the similarity between the collection of human
traces and each of the four collections of autonomous agent
traces, according to the metrics discussed earlier.

Adaptive DBA DBRA GT
dO 0.57 0.008 0.008 33.26
dR 0.21 0.0005 0.01 0.19
dB 11.74 0.008 0.11 32.83
dY8 4.22 16.34 20.10 97.02

Table 1: Similarity to human play, based on various
metrics.

The DBA and DBRA agents score very well on the three
metrics based on offer value, rejection percentage, and target-
recipient. We fully expect this result as both these agents
generate their behavior by sampling from these distribu-
tions. It is also clear that the GT agent performs very differ-
ently from the human data, based on most of the metrics. It
is only close to the human trace data when compared on dR,
the metric based on the target-recipients distribution. This
is because we assumed that the game-theoretic agent would
distribute its offers uniformly across the other players, and
human play roughly approximates this phenomenon. It is
worth noting that the Adaptive Agent scores approximately
the same as the GT agent on this metric. Naturally, the
Adaptive Agent scores worse than the distribution-based
agents on the temporally-independent distribution metrics
dO, dR, and dB , but its behavior is still relatively close to hu-
man behavior. On the temporally-dependent reciprocation-
chain metric dY8 , the Adaptive Agent scores much better in
similarity to the human traces.

To get a more intuitive sense of the differences in the trace
data, we also display the actual distributions that underlie
the metrics in Figures 2-5, which shows the distributions of
offer amounts for each of the agent types, the probability of
rejection given each offer amount, the distribution of offer
recipients, ordered from most likely to least likely, and the
probability that an offer will be reciprocated, given that a
chain of c offers have been made between the players in the
past c = 1, 2, . . . , 8 time periods.

While the Adaptive Agent may not have been the most
human-like agent according to the other three metrics, the
form of its distributions still reasonably resembled the dis-
tributions produced by human play. However, on the time-
dependent reciprocation-based metric, it is very clear that
the Adaptive Agent is the only one that exhibits behavior
that is similar to human play. This temporal dependence
is crucial to creating agent behavior that emulates human
behavior.
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Figure 2: (Top to bottom) Distribution of offer
amounts, for each of the five types of agents dis-
cussed. dO is based on these distributions.
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Figure 3: Rejection probabilities given offer
amounts, for each of the five types of agents dis-
cussed. In our game-theoretic agent, we assumed
that offers of $0 would be rejected. dB is based on
these probabilities.
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Figure 4: Target recipient distribution, for each
of the five types of agents discussed. The game-
theoretic agent was assumed to distribute its offers
uniformly across the other agents. dR is based on
these distributions.
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Figure 5: Graph showing the probability that an
offer is reciprocated, given that a chain of recipro-
cation of length c = 1, 2, . . . , 8 has just occurred. dY8
is based on these probabilities.

7. RELATED WORK
Our choice to investigate the Ultimatum Game was moti-
vated by its long history in the field and the fact that it is a
leading example of where game-theoretic reasoning fails to
predict consistent human behaviors [5, 12, 6]. Economists
and sociologists have proposed many variants and contexts
of the Ultimatum Game that seek to address the divergence
between the “rational” Nash equilibrium strategy and ob-
served human behavior, for example, examining the game
when played in different cultures, with members of differ-
ent communities, where individuals are replaced by groups,
where the players are autistic, and when one of the play-
ers is a computer. Interestingly, isolated non-industrialized
cultures, people who have studied economics, groups, being
autistic, and playing with a computer all tend to lead to
less cooperative behavior [5, 12, 10, 7, 2, 4]. Learning hu-
man game data is a promising approach for quickly learning
realistic models of behavior. In the paper, we have demon-
strated this approach in SUG, and proposed metrics that
evaluate the similarity between autonomous agents’ game
traces and human game traces.

Recently, there has also been other work attempting to model
human behavior in multi-agent scenarios, primarily in so-
cial network and other domains modeled by graphical re-
lationship structures [8]. In contrast, our work focuses on
multi-agent situations where motivated agents make sequen-
tial decisions, thus requiring models that include some con-
sideration of utilities and their interplay with psychological
effects. Our Adaptive Agent is a simple model, with param-
eters that are fit to the collected data, that demonstrates
this approach.

Finally, a critical aspect of this line of work must include
the development of appropriate metrics for evaluating the
verisimilitude of the autonomous agent behaviors to human
behavior. While there is a long literature on time-series
metrics [11], in this paper, we show that these metrics do
not capture the temporal causality patterns that are key
to evaluating human behaviors, and thus are insufficient to
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evaluate agent behaviors when used alone.

8. CONCLUSION
Our goal is to develop approaches to create autonomous
agents that replicate human behavior in multi-agent do-
mains where humans make sequential decisions over time.
To create and evaluate these agents, one needs appropriate
metrics to characterize the deviations from the source be-
havior. The challenge is that a single source behavior in
dynamic environments produces not a single decision but
instead multiple traces where each trace is a sequence of
decisions. A single source can produce a diverse collection
of traces. Thus, the challenge is to find a way to compare
collections of traces.

We introduced the Social Ultimatum Game and in that
context, developed time-collapsed and time-dependent met-
rics to evaluate a collection of autonomous agents. We
showed that agents built on time-collapsed metrics can miss
key characteristics of human play, in particular an accurate
model of temporal reciprocity. While our adaptive agent
was able to perform closer to this metric, the key is the
identification of time-dependent metrics as a key factor in
evaluating emulation agents. This also has implications on
the type of agent model necessary to have as a substrate
upon which one can learn from human data.

Going forward, we will consider more complex domains and
potential corresponding models. We will require both gen-
eral, parameterized models that can be learned from data,
as well as more formal methods for constructing appropri-
ate temporal metrics to automatically evaluate the realism
of the learned behaviors.
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ABSTRACT

We study the problem of feature generation for function ap-
proximation in solving Markov Decision Processes (MDP).
The main idea is to use bisimulation metrics to generate
state similarities for spectral clustering methods. The latter
have already been used in the context of MDPs, but without
integrating reward information. We first provide theoretical
results to justify the importance of reward information for
function approximation. Then we empirically demonstrate
improvement in approximation quality when bisimulation
metrics are used in spectral clustering for automated fea-
ture generation.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms

Algorithms, Theory, Experimentation

Keywords

Markov Decision Processes, Spectral Clustering, Basis Func-
tion Learning

1. INTRODUCTION
Markov Decision Processes (MDPs) are a powerful frame-

work for modeling sequential decision making for intelligent
agents acting in stochastic environments. One of the impor-
tant challenges facing such agents in practical applications
is finding a suitable way to represent the state space, so that
a good way of behaving can be learned efficiently. In this
paper, we focus on a standard approach to learning a good
policy, which involves learning first a value function, associ-
ating states to expected returns that can be obtained from
those states. Sutton and Barto [11] provide a good overview
of many methods that can be used to learn value functions.
In this paper, we focus on the case in which function ap-

proximation must be used to represent the value function.
In this case, states are mapped into feature vectors, and a
set of parameters is learned, which allows us to compute the
value of any given state. Having a good set of features is
crucial for this type of method. Theoretically, the quality
of the approximation that can be obtained depends on the
set of features [12]. In practice, the feature set affects not
only the quality of the solution obtained, but also the speed

of learning. Two types of methods have been proposed in
recent years to tackle this problem.

The first approach, exemplified by the work of Mahadevan
and Maggioni [7] (and their colleagues) relies only on infor-
mation about the transitions between states. More specifi-
cally, data is used to construct a state connectivity graph.
Spectral clustering methods are then used to construct state
features. The resulting features capture interesting transi-
tion properties of the environment (e.g. different spatial
resolution) and are reward-independent. The latter prop-
erty can be viewed either as an advantage or as a disad-
vantage. On one hand, reward independence is desirable in
order to be able to quickly re-compute values, if the prob-
lem changes. On the other hand, if the goal is to compute a
good policy for a particular problem, a general feature rep-
resentation that is insensitive to the task at hand and only
captures general dynamics may be detrimental.

The second category of methods aims to construct basis
functions that reduce the error in value function estimation
(also known as the Bellman error), e.g. [5, 8]. In this case,
features are reward-oriented, and are formed with the goal
of reducing value function estimation errors. Parr et al. [8]
show that this approach guarantees monotonic improvement
as the number of features increases, under mild technical
conditions. However, unlike in the case of spectral methods,
the resulting features are harder to interpret, and do not
capture the transition structure of the domain as nicely.

The goal of this paper is to show how one can incorporate
rewards in the construction of basis functions, while still us-
ing a spectral clustering approach. Specifically, we explore
the use of bisimulation metrics [3, 4] in combination with
spectral clustering, in order to create good state features
for linear function approximation. Bisimulation metrics are
used to quantify the similarity between states in a Markov
Decision Process. Intuitively, states are close if their im-
mediate rewards are close, and they transition with similar
probabilities to close states. Ferns, Panangaden, and Precup
[3] showed that the difference in values between two states
can be bounded above using their bisimulation distance. In
this paper, we prove a significant extension of this result,
for the case of general, linear function approximation. This
theoretical result suggests that bisimulation can be used to
derive a similarity measure between states to be used in the
creation of features through spectral clustering. We illus-
trate this approach on several problems, showing that it has
significantly better results than methods using only features
based on the state dynamics, ignoring reward information.

The paper is structured as follows. First, we present nec-
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essary background on reinforcement learning and basis func-
tion construction, and introduce our notation. The following
section reviews the definition and main results on bisimula-
tion metrics. Next, we present the main idea of our research:
integrating rewards into the spectral feature extractors. The
theoretical extension of the bisimulation metric guarantees
to linear function approximation is then presented. Lastly
we present empirical illustrations, demonstrating the util-
ity of bisimulation metrics for feature generation, and we
discuss conclusions and avenues for future work.

The paper is structured as follows. In Section 2 we present
necessary background on reinforcement learning and basis
function construction, and introduce our notation. Section 3
reviews the definition and main results on bisimulation met-
rics. Section 4 presents the main idea of our approach. The
theoretical extension of the bisimulation metric guarantees
to linear function approximation is presented in Section 5.
In Section 6 we present empirical illustrations, demonstrat-
ing the utility of bisimulation metrics for feature generation.
Section 7 presents conclusions and avenues for future work.

2. BACKGROUND
We adopt the framework of (finite) Markov Decision Pro-

cesses, in which the environment is represented as a tuple
〈S,A, P : S ×A× S → [0, 1], R : S ×A → [0, 1], γ〉. S is a
set of states, A is a set of actions, P is the transition model,
with P a

ss′ denoting the conditional probability of a transition
to state s′ given current state s and action a, and R is the
reward function, with Ra

s denoting the immediate expected
reward for state s and action a. Without loss of generality,
we only consider R ∈ [0, 1]. Also, γ is a discount factor and
γ ∈ (0, 1). A policy π : S ×A → [0, 1] specifies a way of be-
having for the agent. We would like to numerically evaluate
the quality of a policy by considering the long term behavior
generated.

The model of the environment consists of P and R, which
can be represented as matrices P ∈ M(|S|×|A|, |S|), P1 = 1
and R ∈ M(|S| × |A|, 1), where 1 is just a all-ones vector.
In the same manner, policies can also be represented as π ∈
M(|S|, |S|× |A|),π1 = 1. For every given state s0, the row
correspondent to s in π is non-zero only for the pairs (s0, a)
for which the policy has some non-zero probability of choice.
Next, given an initial state distribution d0 ∈ M(1, |S|), just
by understanding the interaction between π and P one can
determine a distribution over the state-action pairs at some
time t as d0π(Pπ)t−1. The value (or performance) of a policy
V π
d0

is evaluated based on expected accumulated discounted
reward obtained at each time step.

V π
d0 = d0πR+ γdπ0πPπR+ γ2d0πPπPπR+ ...

Now, the main objective of policy evaluation is control. One
would like to compute the value when starting at a given
state in order to obtain an optimal behavior. In this regard,
one is mostly interested in computing the value function V π

which is simply a vector over the state space:

V π = πR+ γπPπR+ γ2πPπPπR+ ...

=
∞
∑

i=0

(γπP )i(πR)

One of the most celebrated results in the study of Markov
Decision Processes is known as the Bellman Equation. This

can be used to compute the value function as an exact ex-
pression, or using other computational friendly methods like
dynamic programming and Monte Carlo. It states that:

V π = π(R+ γPV π)

Therefore, one can obtain V as (I−γπP )−1πR. Most impor-
tant, there exists a unique, deterministic policy (i.e. π(s, a)
is either 0 or 1) π∗, whose value function, V ∗ is optimal for
all state-action pairs: V ∗ = maxπ V π. Moreover, this value
function satisfies the Bellman optimality equation

V ∗ = max
π:deterministic

π(R+ γPV ∗)

and is the limit of a recursively defined sequence of value
functions:

V n+1 = max
π:deterministic

π(R+ γPV n) with V 0 = 0

Well-known incremental sampling algorithms, such as Sarsa
and Q-learning, can be used to estimate these values. For a
more comprehensive overview see [10, 1, 11].

Function Approximation methods are mostly used in en-
vironments that are either continuous, so that basic theory
and algorithms do not apply, or too large for most finite
MDP algorithms to be efficient. The methods approximate
values that are used in the algorithms using a parameter-
ized function where the number of parameters is substan-
tially smaller than the state space. Then, the environment
model or sampled data is used to perform gradient descent
or other optimization methods to obtain optimal parameter
settings(i.e. good approximations). In most algorithms, the
tabular formulation for the state-action or the state value
function is replaced with a linearly parameterized function
[11].

Many times we are able to easily describe states or actions
by some identifiable features, denoted by F . Also, in many
continuous or partially observable environments this type of
representation might be the only one we can work with. The
simplest approximation based on these features, denoted by
Φ ∈ M(|S|, |F |), is obtained by using linear approximations:
V ∗ ≈ Φθ. That is, we associate each feature with one pa-
rameter from θ, and we minimize ||V − Φθ||. Notice that
for the experimental section of this paper we use the L2, as
used in most function approximation works. Now, after op-
timization is performed, θ represents the relative importance
of the features for the approximated value. Although these
methods seem to perform well in practice, theoretically they
have weak convergence and performance guarantees [11, 12,
1].

Representation Discovery is the field that addresses the
problem of finding the feature map Φ, in the absence of hard-
engineered basis functions [6, 8, 5]. Mahadevan [6] introduce
spectral methods that are used to synchronously learn both
the representation and the control policies, optimal within
a representation. Their approach is based on the following
derivation:

Proposition: Let π be a policy such that the transition
matrix can be diagonalized: there exists an orthonormal
linear map Φ ∈ M(|S|, |S|), and a vector λ such that πP =
ΦDλΦ

T , where Dv denotes the diagonal map with vector v
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as its diagonal. Then,

V π =
∞
∑

i=0

(γπP )i(πR) (1)

=
∞
∑

i=0

γi(ΦDλΦ
T )i(Φα) for some α (2)

=
∞
∑

i=0

γiΦDi
λα since Φ is orthonormal (3)

= Φ

(

∞
∑

i=0

γiDi
λα

)

= Φ
(

D−1
1−γλα

)

(4)

Under these circumstances, the orthonormal basis Φ pro-
vides a convinient basis. That is because one can easily
compute the weight vector associated with this basis for V π.
For the base correspondent to the ith state, this weight is
αi/(1− γλi). Still, this representation is only valid for pol-
icy π, so for the purposes of learning optimal control one
would have to find a way to accommodate for multiple poli-
cies. In [6] this is done by finding eigenfunctions of diffusion
models of transitions in the underlying MDP using random
policies. These models impose no restriction on the tran-
sition model, but they have the drawback of ignoring the
reward model, which can prove to be hurtful in some situa-
tions [9]. That is, the set of feature vectors Φ that is used
in function approximation is a subset of the eigenvectors of
the normalized laplacian [2]:

L = D
− 1

2

W1
(DW1 −W )D

− 1

2

W1

Where W ∈ M(|S|, |S|) is a symmetric weight adjacency
matrix. The advantage of the above formulation is that
mathematically L shares the same eigenvectors with the
transition matrix of a random walk determined by W . That
is, we construct a graph over the state space and we generate
a random walk by transitioning with probabilities propor-
tional to the incident weighs. The eigenfunctions that de-
scribe the Laplacian describes the topology of the random
graph under W . Geometrically it provides the smoothest
approximation that respects the graph topology [2].

3. BISIMULATION METRICS
Bisimulation metrics have been used in the context of

reinforcement learning as tools in finding state space ag-
gregations for complexity reduction (i.e. learning over an
MDP with a smaller state space). A large MDP is reduced
to a smaller one by clustering states that are close to each
other based on bisimulation metrics. If clustering is done by
grouping states at distance 0, then the bisimulation prop-
erty guarantees that the reward and transition models do
not change in the aggregate MDP. Behaving optimally in
the aggregated MDP results in an optimal bahaviour in the
original MDP as well. Ferns, Panangaden, and Precup [3]
present a way to find such metrics, which have flexible com-
putation algorithms that allow various approximations. The
presented methods are based on finding a fixed point M∗ of
the following transformation on a metric M ∈ M(|S|, |S|):

F (M)(s, s′) = maxa∈A[(1− γ)|R(s, a)−R(s′, a)|

+ γTK(M)(P (s, a), P (s′, a))]

As noticed, this recursion depends on Tk, known as the
Kantorovich metric over two probability measures. To de-
termine this metric for two vectors P,Q, one can solve the
following linear program:

TK(M)(P,Q) = maxU∈M(|S|,1)(P −Q)TU

such that U1T − 1UT ≤ M

0 ≤ U ≤ 1

Although the transition and reward models are respected
only upon perfect aggregation (distance 0), the metric pro-
posed by Ferns, Panangaden, and Precup [3] provides some
approximation guarantees for other clustering functions as
well. Suppose S′ is the state space of the aggregate MDP.
Let C ∈ M(|S|, |K|) be the identity map of the aggregation.
Then the value function V ∗

agg of the aggregate MDP satisfies
the following :

||CV ∗
agg − V ∗||∞ ≤|| diag(M∗CD−1

1TC
CT )||∞/(1− γ)2

where the L∞ norm extracts the maximal entry in a vector.
Notice thatM∗CD−1

1TC
∈ M(|S|, |K|) computes the normal-

ized distance from a state s to a cluster c. We then apply
CT to obtain normalized distance from s to the cluster of
a state s′. We then consider only the diagonal entries of
this map, and the approximation error is bounded above by
the maximum distance error between a state and the states
included in the same cluster.

These bounds provide mathematical guarantees that given
some clustering based on the Kantorovich metric, the qual-
ity of the approximation is reflective of the largest distance
inside a cluster. One would like to generalize the result to
function approximation as well: the approximation error of
a feature set is representative of the projection of the metric
on the feature set. To do this, the following small results on
bisimulation methods will be useful.

First, for a fixed policy π, we denote byKπ(M) ∈ M(|S|, |S|)
the map Kπ(M)(s, s′) = TK(M)((πP )(s), (πP )(s′)). Then
we can reformulate bisimulation as:

F (M) = max
π:determinisitc

(1− γ)|(πR)1T −1(πR)T |+ γKπ(M)

where KM is a square |S|× |S| matrix obtained from:

Kπ(M) = max
U∈M(|S|,|S|2)

diag((I1(πP )− I2(πP ))U)

such that I1U − I2U ≤ diag(I1MIT2 )1T

0 ≤ U ≤ 1

where I1, I2 ∈ M(|S|2, |S|) are identity maps restricted on
the first, respectively the second argument.

Lemma 1: If V n is the sequence generated by the Bell-
man operator(i.e. V n = π(R+ γPV n−1)), then

(1− γ)(πPV n1T − 1(πPV n)T ) ≤ Kπ(F
n(0)).

Proof:
First, it was proven in [3] that under the given circum-

stances Û = (1− γ)V n1T is a feasible solution for the Kan-
torovich LP. For this particular choice of parameters Û ,

diag((I1πP − I2πP )Û

= (1− γ) diag((I1πPV n − I2πPV n)1T )

= (1− γ)(I1πPV n − I2πPV n)
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where the last equality is a simple linear algebra result which
states that for any vector v, diag(v1T ) = v. Now, we can
rearrange the above result in a |S| × |S| matrix to obtain:
(1− γ)(πPV n1T − 1(πPV n)T ), and the result follows.

4. EIGENFUNCTIONSTHAT INCORPORATE

REWARD INFORMATION
Spectral decomposition methods rely on the following rea-

soning: we can find a set of basis functions for real valued
functions over the MDP state space, each with a numerical
importance value. These are eigenfunctions, which can be
used optimally to represent value functions for fixed poli-
cies. They come with corresponding eigenvalues which can
be used as heuristics in choosing only a subset basis set to
represent the entire optimal set [2]. That is,

V π = Φπ
(

D−1
(1−γλ)α

)

(5)

where the importance of the ith basis function is αi/(1−γλi).
Notice the dependence of Φπ on the policy which is used

to generate the transition model. Since our ultimate goal is
to obtain basis functions that are independent of π, many
”surrogate”diagonalizable matrices have been provided. For
the sake of simplicity, they are only reflective of the MDP
transition model, rather than the entire MDPmodel [6]. The
main problem with this approach was illustrated in [9], and
it comes from a fault in the heuristic used to select a subset
of the basis for approximation. If we only use the eigenval-
ues of the transition model, the constants α in Equation (5)
relative to the reward function are ignored. The quality of
the approximation can be quite affected in these situations.
Nonetheless, these methods have great advantages in gener-
alization over MDPs that only differ in the reward function,
Let π be a fixed policy. Building on Derivation 5, we

could use the eigenvalues as heuristics, but with a different
corresponding set of eigenfunctions:

V π = Φπ
(

D−1
(1−γλ)α

)

(6)

= ΦπD−1
(1−γλ)Dα1 = ΦπDα

(

D−1
(1−γλ)1

)

(7)

Notice how each original eigenfuntion is normalized based
on the representation α of the reward under the given pol-
icy. If the eigenvalues are to be used as heuristic in feature
extractor selection, one should be inclined to use ”surrogate
methods” that incorporate reward information. That is, we
look to extract linear state relationships that reflect the in-
teraction between reward and transition models, the same
way reward parameters α normalize the eigenfunctions of
the transition model. That is exactly the kind of informa-
tion that bisimulation metrics summarize. The following
section extends the clustering error bounds for bisimulation
metrics to general feature maps. The results motivate the
usage of these metrics in the context of feature generation
for function approximation.

5. EXTENDING BISIMULATION BOUNDS

FOR GENERAL FEATURE MAPS
One of the theoretical properties of the bisimulation met-

rics introduced in [3] is the fact that aggregation errors is
bounded above by a linear function of the maximal distance

of aggregated states. That is, the more an aggregation is
faithful to the bisimulation metric, the better the approxi-
mation. Below, we prove that such a result holds in the case
of function approximation as well.

Let Φ ∈ M(|S|, |F |) be a feature extractor with the prop-
erty Φ1 = 1. Function approximation methods have as a
goal to generate the value function with the highest norm
that is contained in the subspace spanned by the eigenvec-
tors, and also in the space generated by the Bellman op-
erator with any policy. Therefore, instead of finding the
best representation relative to the original orthonormal ba-
sis representing the state space, we want the best repre-
sentation relative to a new basis Φ, which we call feature
extractors. To find this, we can think of the model P,R as
maps over the features as results of some action, and solve
this smaller MDP. That is, the original MDP acts the same
as 〈F,A, PΦ, RΦ, γ〉.

PΦ = D−1
ΦT 1

ΦTPΦ and RΦ = D−1
ΦT 1

ΦTR

where Φ is used both as the same map from S → F and
from (S × A) → (F × A), depending on the matrix dimen-
sions required. Notice that PΦ determines the probability
to transition from a state-action pair to a feature, and ap-
plying D−1

ΦT 1
ΦT is just a normalized averaging based on Φ.

Also, these are well defined since

PΦ1 = D−1
ΦT 1

ΦTPΦ1 = D−1
ΦT 1

ΦTP1 = D−1
ΦT 1

ΦT1 = 1

One could now solve this smaller MDP and find V ∗
Φ , as the

optimal value function on the feature state space. Next, one
can evaluate the quality of the feature selection by compar-
ing ΦV ∗

Φ to V ∗, much as we do with aggregation methods,
as in [3]. The following theorem provides an upper bound
on the L∞ difference when one use of a given feature set Φ,
where M∗ is the bisimulation metric previously presented:

Theorem 1: Given an MDP, let Φ ∈ M(|S|, |F |) be a
set of feature vectors with the property Φ1 = 1. Then the
following holds:

||ΦV ∗
Φ − V ∗||∞ ≤

1
(1− γ)2

|| diag(M∗ΦD−1
1TΦΦ

T )||∞

where M∗ is the bisimulation metric representing the fixed
point of the Kantorovich-based operator, as previosly de-
scribed.

Proof: Note: unless otherwise stated, the maximum op-
erator for matrices/vectors acts on every individual entry.
The same applies for the order ≤ operation.

First, notice the following preliminary properties:
ΦD−1

ΦT 1
(ΦT1) = Φ1 = 1, and if v is a vector, diag(v1T ) =

diag(1vT ) = v.
Another very important property is the following:

max
π:deterministic

(πΦT v) ≤ ΦT max
π:deterministic

πv

This is a simple application of the triangle inequality where
all values are positive.

Now, let V 0 = V 0
Φ = 0, and generate the sequences {V n}

and {V n
Φ } that will converge to the optimal values using the

Bellman operator. Then,
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|ΦV n+1
Φ − V n+1|

= |Φmax
π:det

π(RΦ + γPΦV
n
Φ )−max

π:det
π(R+ γPV n)|

= |Φmax
π:det

πD−1
ΦT 1

ΦT (R+ γPΦV n
Φ )−max

π:det
π(R+ γPV n)|

= | diag(Φmax
π:det

πD−1
ΦT 1

ΦT (R+ γPΦV n
Φ )1T )

− diag(ΦD−1
ΦT 1

ΦT1max
π:det

(π(R+ γPV n))T |

≤ | diag(ΦD−1
ΦT 1

ΦT max
π:det

π(R+ γPΦV n
Φ )1T )

− diag(ΦD−1
ΦT 1

ΦT max
π:det

1(RT + γ(V n)TPT )πT )|

≤ diag(ΦD−1
ΦT 1

ΦT

max
π:det

|π(R+ γPΦV n
Φ )1T − 1(RT + γ(V n)TPT )πT |)

Next,

max
π:det

|π(R+ γPΦV n
Φ )1T − 1(RT + γ(V n)TPT )πT | ≤

≤ max
π:det

(

|πR1T − 1(πR)T |+ γ|πPV n1T − 1(V n)T (πP )T |
)

+ γmax
π:det

|πP (φV n
Φ − V n)1T |

≤ max
π:det

(1− γ)−1((1− γ)|πR1T − 1(πR)T |

+ γ|(πP )(1− γ)V n1T − 1(1− γ)(V n)T (πP )T |)

+ γmax |ΦV n
Φ − V n|11T

≤ (1− γ)−1Mn + γ||ΦV n
Φ − V n||∞11T

Notice that the last derivation is a result of Lemma 1. Putting
it all together we get:

|ΦV n+1
Φ − V n+1|

≤ diag(ΦD−1
ΦT 1

ΦT ((1− γ)−1Mn+

+ γmax ||ΦV n
Φ − V n||∞11T ))

≤ (1− γ)−1 diag(ΦD−1
ΦT 1

ΦTMn) + γ||ΦV n
Φ − V n||∞1

We obtain the result of the statement by recursion and by
taking the limits of the inequality.

6. EMPIRICAL RESULTS

6.1 Methods
Notice the importance of the above result for empirical

purposes. One is free to use any kind of feature selections,
but if they impose a relationship as close as possible to
the bisimulation metric, then one has theoretical guaran-
tees that the error in approximation is bounded. To illus-
trate this, we modify the spectral decomposition methods
presented in [6] to incorporate reward information using the
bisimulation metric.

We start by defining a similarity matrix WK that reflects
the distance bisimulation metric M∗. We first apply to each
entry of M∗ the inverse exponential map, x → e−x, and
then we normalize the entries to be spanned in the interval
[0, 1], by applying the map x → (x−minx)/(maxx −minx).
WK is then contrasted to other similarity matrices that have
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Figure 1: Cycle MDP is controlled by 2 actions: the
first one moves uniformly at random in the cycle
with prob. 0.5, and transitions to state 11 with prob.
0.5. The second does the same, but with prob. 0.3,
0.7 respectively. From state 11 one can use the ac-
tions to move deterministically back in the cycle or
to the reward state. A reward of 10 is obtained upon
entering state 12, where any action transitions back
in the cycle.
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Figure 2: Hierarchical MDP is controlled by 3 ac-
tions. These move either uniformly at random in
each cycle, or jump to an adjacent cycle if possi-
ble. Inter-cycle transitions happen with prob. 0.5,
0.7, and 0.3 respectively, based on the action choice.
Rewards of 10 and 15 are obtained upon entering
states 0 and 10, respectively.

Figure 3: 7x7 and 9x11 Grid Worlds are controlled
by 4 actions representing the four movement direc-
tions in a grid. Upon using any action, the corre-
sponding movement is performed with prob. 0.9,
and the state does not change with prob. 0.1. If the
corresponding action results in collision with wall,
the state does not change. Rewards of 10 are ob-
tained upon entering goal states labelled by dots.
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Figure 4: Empirical Results are shown as comparisons between the best approximations possible using variable
number of features, and is done on the MDPs described in Figures 1, 2, and 3. For number of 300 randomly
generated policies, Algorithm 1 was used to compute the best approximation to the value function using
both bisimulation and the accessibility matrix for state similarity. The graphs represent average L2-error in
approximation. The last two graphs were generated by running the same algorithm at different numerical
precision of the bisimulation metric.
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previously been studied, known as accessibility matrices:
WA ∈ M(|S|, |S|) with W (s, s′) = 1 if a transition from
s to s′ or vice-versa is possible under a uniformly random
policy, and 0 otherwise.

Next, the normalized Laplacian is computed for both weight
matrices, and the feature vectors are selected from the set
of eigenvectors, ΦK and ΦA, respectively:

L = D
− 1

2

W1
(DW1 −W )D

− 1

2

W1

Since most of the time these sets of eigenvectors are lin-
early independent, they both allow one to represent the ex-
act value function for a policy on the underlying MDP. Still,
for control purposes, one seeks to use only a limited number
of feature vectors, much smaller than the number of states.
Instead of using |S| features, these methods only use the
k ) |S| eigenvectors corresponding to the largest k eigen-
values, based on derivations 4 and 7.

Algorithm 1 Spectral Clustering Automatic Feature Gen-
eration

Given an MDP and a policy π
W ← 0, used as similarity matrix for spectral methods
if desired method is based on bisimulation then

M∗ ← bisimulation metric to some precision
W ← inverse exponential of M∗, normalized in [0, 1]

else
desired method is based on state topology
for all pairs s, s′ in state space do

W (s, s′) ← 1 if a transition s → s′ or s′ → s is
possible

end for
end if

F ← eigenvectors of D
− 1

2

W1
(DW1 −W )D

− 1

2

W1

sort(F , based on the corresponding eigenvalues)
Φ ← the first k eigenvectors of F
ΦON ← orthonormal basis of Φ, using Gram-Schmidt pro-
cedure
V π ← (I − γP )−1πR, exact value function of π
ΦVφ ← V π’s projection on ΦON

6.2 Experimental setup
A set of simplistic MDPs and some larger MDPs based on

a grid world were used to contrast the representational power
of the two methods. These are explained in Figures 1, 2
and 3. A set of 300 policies were randomly generated for
these MDPs and Algorithm 1 was used to evaluate them
when different number of features were used for approxi-
mation, as previously described. Notice that the reduced
number of features is determined by choosing the k eigen-
vectors of the laplacian based on their corresponding eigen-
value. For each policy π and reduced set of features Φ, we
find the best possible approximation V̄ π of V π. This is done
by first computing an orthonormal basis ΦON for the space
spanned by Φ, using the Gram-Schmidt procedure. Next,
we project the exact value function V π onto ΦON .
Figure 4 presents a summary of the results obtained. As it

can be seen, using bisimulation to integrate reward informa-
tion in the similarity matrix used for spectral decomposition
can provide considerable improvement in terms of approxi-
mation power. For control purposes, one should look at the
smallest number of features for which the approximation er-

ror is as small as possible. The results are reflective of the
fact that using feature sets that ignore reward information
is materialized in an error that becomes negligible when the
number of features is as large as the state space. With the
exception of the 9x11 Grid World, negligible error was ob-
tained quite early when bisimulation was used. Last but not
least, experiments were conducted to study the behavior of
the newly introduced methods when precision quality is re-
duced on behalf of computation time. In the case of the
smaller MDP based on cycles, precision was not a factor, as
the same results were obtained for metrics computed within
10−1 to 10−7 precision. This was not the case with the larger
grid MDPs. Notice in Figure 4 how the 7x7 grid, which
was specifically designed with a topology that reflects value
functions quite well, how bisimulation can suffer much from
bad precision. Still, the error remains small with the larger
9x11 MDP, where the goal state(or the reward information)
becomes the cornerstone for value function approximation.

7. CONCLUSION AND FUTUREWORK
We presented an approach to automatic feature construc-

tion in MDPs based on using bisimulation methods and
spectral clustering. The main aspect of this work is that
we obtain features that are reward-sensitive, which proves
quite important in practice, according to our experiments.
Even when the precision of the metric is reduced, to make
computation faster, the features we obtain still allow for a
very good approximation.

The use of bisimulation allows us to obtain solid theo-
retical guarantees on the approximation error. These are
obtained by extending previous results on clustering using
bisimulation to more general function approximation set-
tings. However, the cost of computing or even approximate
bisimulation metrics may be prohibitive for some domains.
The results presented here are meant as a proof-of-concept
to illustrate the utility of bisimulation metrics for feature
construction. We are currently exploring the use of other
reward-based feature construction methods, with smaller
computational costs.
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ABSTRACT
Despite high research emphasis over the last few decades,
newly created multi-agent learning (MAL) algorithms con-
tinue to have one or more fatal weaknesses. These weak-
nesses include slow learning and convergence rates, failure to
learn non-myopic solutions, and inability to learn effectively
in domains with many actions, states, and associates. The
continued presence of these prohibitive weaknesses in newly
developed MAL algorithms suggests a need to identify and
develop fundamentally different approaches to MAL. One
possibility is to employ humans as teachers of these artifi-
cial learners. As a step toward determining the usefulness
of this approach, we explore “learning by demonstration”
(LbD) in repeated stochastic games, wherein the learning
algorithm utilizes intermittent demonstrations from the hu-
man teacher to derive a behavioral policy. To do so, we
compare and contrast two LbD algorithms in a rich formu-
lation of the iterated prisoners’ dilemma.

Categories and Subject Descriptors
H.4 [Information Systems]: Miscellaneous

General Terms
Algorithms, performance

Keywords
Multi-agent learning, game theory, learning by demonstra-
tion

1. INTRODUCTION
Due to its potential applicability to many real-world sys-

tems, multi-agent learning (MAL) in repeated games has
become a popular research topic [19]. The goal of much of
this research has been to develop algorithms that maximize
an agent’s payoffs over time. Unfortunately, current MAL
algorithms still cannot successfully solve many of the real-
world challenges that this research has targeted due to one or
more debilitating weaknesses. First, most MAL algorithms
learn too slowly to be useful in real-time systems. These al-
gorithms often require thousands of iterations to converge,
even in two-agent, two-action games. Second, most MAL
algorithms do not“scale-up” to games with many agents, ac-
tions, and states [10]. Lastly, most MAL algorithms perform
effectively in a restricted class of repeated games against a
restricted set of associates, but often do not perform well
when these limiting assumptions are not met.

While much work has attempted to overcome these weak-
nesses, we believe that repeated failures highlight the need
for a new approach to MAL. Like a child learning a complex
skill, agents learning in repeated games require a (potentially
flawed) tutor to help them overcome the complexities of
these dynamic environments (Figure 1). People with vested
interest in the agent’s success should potentially supply in-
termittent reward reinforcement, demonstrations of success-
ful behavior, and intuition into what might be successful [5].

In this paper, we begin to explore how intermittent inter-
actions between a human teacher and an artificial learning
agent will affect the outcome of repeated stochastic games
[18]. In particular, we focus on learning by demonstration
(LbD) in repeated stochastic games, wherein the human
teacher intermittently demonstrates the actions that he or
she believes the agent should perform. The agent then uses
these demonstrations to improve its behavior over time.

LbD has been studied and applied to many problems, par-
ticularly in the robotics domain [1]. Most of this research has
pertained to situations in which the human teacher knows
successful behavior. However, in repeated games, where in-
formation about learning associates, their tendencies, be-
haviors, and goals, and even the game itself is lacking, the
teacher may or may not know how the agent should be-
have to be successful. Since the teacher will also likely learn
throughout the repeated game, demonstrations provided by
the human are likely to be noisy and to change with time.

As a step toward determining the potential of LbD in re-
peated stochastic games, we focus on two related sets of
questions. First, what types of LbD algorithms will be
successful in repeated stochastic games? These algorithms
must quickly learn non-myopic solutions in games with many
states and agents. Second, how good do demonstrations
need to be for these algorithms to learn successfully? Can
the algorithms utilize demonstrations from unformed novices,
or do they require more-informed demonstrations? Can LbD
algorithms learn effectively when human teachers are ini-
tially less-informed, but become more-informed over time?

In this paper, we begin to analyze these questions using
a rich formulation of the iterated prisoners’ dilemma. In
particular, we compare and contrast two LbD algorithms in
this game given different qualities of demonstrations. We
begin by describing the prisoners’ dilemma game.

2. MULTI-STAGE PRISONERS’ DILEMMA
We consider the problem of learning in the repeated stochas-

tic game shown in Figure 2(a) [4]. In this game, two players
(represented by the circle and the square in the figure) be-
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Figure 1: This paper discusses the situation in which a human teacher interacts with a learning agent in
a repeated stochastic game. The grey rectangle represents the components of a traditional repeated game.
The human teacher uses its knowledge, intuition, and external knowledge to teach the agent how to play the
repeated game.

(a)

Defect Cooperate
(Gate 1) (Gates 2, 3, or 4)

Defect
-25, -25 -10, -32

(Gate 1)

Cooperate
-32, -10 -16, -16

(Gates 2, 3, or 4)

(b)

Figure 2: (a) A multi-stage prisoner’s dilemma
game. Each agent (blue circle and red square) must
cross the middle barrier via one of four gates to
reach the other agent’s starting position in as few
steps as possible. (b) High-level payoff matrix for
the MSPD.

gin each round in opposite corners of the world, and seek to
move across the world through one of four (initially open)
gates to the other player’s start position in as few moves as
possible. The physics of the game are as follows:

1. From each cell, each player can attempt to move up,
down, left, or right. Moves into walls or closed gates
result in no change to the player’s position. The play-
ers move simultaneously; moves are only effectuated
after both players have chosen an action.

2. If both players attempt to move through gate 1 at the
same time, gates 1 and 2 close and both players are
forced to go through gate 3.

3. If player i attempt to enter gate 1 on a move that
player j != i does not, then player i is allowed passage
through gate 1, and gates 1, 2, and 3 close so that
player j can only reach its goal through gate 4.

4. If either player moves through gates 2, 3, or 4, then
gate 1 closes for the remainder of the round.

5. Each player’s score for a round is determined by the
number of moves it takes for it to reach its goal. A
round is automatically terminated after 40 moves if
one of the players has not yet reached its goal.

6. After both players reach their respective goals, the
gates are reset (to open) and each of the players is
returned to its start position.

7. We assume that the locations of both agents and the
current status of the four gates are known to both play-
ers at all times.

When a player attempts to move through gate 1, it is
said to have defected. Otherwise, it is said to have cooper-
ated. Viewed in this way, the high-level game is the pris-
oner’s dilemma matrix game shown in Figure 2(b), where
one player selects the row, and the other player selects the
column. Each cell specifies the negative cost, based on the
minimum number of moves its takes to reach the goal, of
the row player (first number) and the column player (second
payoff), respectively. We refer to this game as the multi-step
prisoners’ dilemma (MSPD).

The Nash equilibrium of a single round of the MSPD is for
each agent to defect. However, in the repeated game, there
are an infinite number of Nash equilibria of the repeated
game [8]. Furthermore, the Nash bargaining solution of the
game is for both agents to cooperate. Thus, without knowl-
edge of the behavior of one’s associate, it is unclear how this
game should be played.

Due to the relatively large state-space of this game com-
pared to many commonly studied repeated games in the lit-
erature, artificial learning algorithms without previous knowl-
edge of the dynamics of the game must simultaneously solve
two decision problems. First, the agent must make the
high-level decision of determining which gate it should move
through given the behavior of its associate. This high-level
decision problem is the iterated prisoners’ dilemma game
shown in Figure 2(b) if both agents take a shortest path
through their chosen gate, or the nearest open gate if the
chosen gate closes. Thus, the second decision problem is
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the low-level control problem of determining the shortest
path. Since the low-level control problem often takes sev-
eral rounds for an artificial agent to learn, the high-level
game changes over time, thus complicating the game.

Given these challenges, it is interesting to observe the be-
havior of existing artificial learning algorithms in this game.

3. BEHAVIOR OF EXISTING MAL ALGO-
RITHMS IN THE MSPD

Existing MAL algorithms for repeated stochastic games
fall into two categories: followers and leaders [15]. Follower
algorithms typically use only their own payoffs to attempt to
learn a best response to associates’ strategies, while leader
algorithms consider the payoffs of both players and attempt
to coax or coerce associates to follow specific solutions. In
this section, we evaluate the strengths and weaknesses of
these two approaches to MAL in the MSPD using two rep-
resentative algorithms. In subsequent sections, we begin to
evaluate the extent to which LbD can be used to improve
upon these algorithms.

3.1 Follower Algorithms in the MSPD
Most reinforcement learning [13] algorithms for stochastic

games are follower algorithms. These algorithms experimen-
tally acquire knowledge of their environment, and use this
knowledge to derive a strategy π given the current state of
the world (s). Example algorithms include Q-learning [20],
Minimax-Q [14], Nash-Q [11], Correlated Q-learning [9], and
WoLF-PHC [3].

For simplicity, we consider a more basic follower algo-
rithm to represent the learning capabilities of followers in
the MSPD. This algorithm uses Monte Carlo reinforcement
learning (MCRL) to learn V (s, a), the value of taking ac-
tion a from state s. The algorithm then acts according to
the following strategy rule:

a←


arg maxa∈A(s) V (s, a) with prob. 1− ε
random otherwise

(1)

where A(s) is the set of available actions from state s, and
ε ∈ [0, 1] is agent’s exploration rate. For simplicity, we use
ε = 0.1 throughout this paper.

MCRL estimates V (s, a) as the average reward it has re-
ceived when it has taken a from state s in the past. Formally,
let R(s, a) be the set of rewards obtained by the agent for
taking action a from state s. Then,

V (s, a) =
1

|R(s, a)|
X

r∈R(s,a)

r (2)

where |R(s, a)| denotes the size of the set R(s, a).
In repeated stochastic games, it is unclear what the values

in R(s, a) represent. In our implementation of MCRL, each
reward r ∈ R(s, a) is based on the number of moves taken by
the agent in the remainder of the current round (after action
a was taken from state s), plus the number of moves taken
by the agent in the subsequent round. This representation
allows the agent to determine how its actions in the current
round affects it payoffs in the next round.

In order to learn more quickly, the MCRL algorithm we
consider in this paper uses k-nearest neighbor function ap-
proximation (k = 20) to determine V (s, a). State and dis-
tance metrics used by the algorithm are given in the Ap-
pendix.
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Figure 3: Average number of steps taken by MCRL
(with and without action reduction) and SPaM in
the MSPD in self play. Displayed values are a
sliding-window average from 25 trials.

Figure 3 plots the average performance of two versions of
MCRL in the MSPD when it associates with a copy of it-
self (self play). The first version of MCRL, labeled MCRL
w/o action reduction, selects its actions from among the four
compass directions. Since MCRL must play randomly un-
til it stumbles upon its goal, it learns quite slowly in this
game since random behavior is unlikely to take it too its
goal within 40 moves (when the round is automatically ter-
minated). Thus, MCRL without action reduction has such
a hard time solving the low-level control problem, its per-
formance is worse than mutual defection, in which each
agent must move 25 steps to get to its goal. Rather the
MCRL agents typically learned to alternate between going
through gate 1 (10 steps) and playing randomly while the
other player goes through gate 1 (40 steps). Continued ran-
dom exploration (ε = 0.1) keeps MCRL’s average number
of steps higher than 25.

The second version of MCRL shown in Figure 3, labeled
MCRL w/ action reduction, applies an action-reduction tech-
nique to reduce the number of actions the agent needs to
consider taking. Such techniques, which require knowledge
about the transition characteristics of the game, eliminate
actions that are unlikely to move the agent closer to an open
gate or its goal. In this way, the low-level control problem
is learned more quickly, which allows MCRL to focus on
the high-level decision problem of determining which gate it
should move through. As such, Figure 3 shows that MCRL
w/ action reduction performs much better than MCRL w/o
action reduction, though it still learns the myopic solution of
mutual defection in self play. Ironically, continued random
exploration causes its average number of moves per round
to be little less than mutual-defection.

Thus, given domain-specific knowledge, action-reduction
algorithms can be used to help solve the low-level control
problem. However, even given such assistance, follower al-
gorithms such as MCRL still tend to learn myopic, less suc-
cessful solutions in the MSPD in self play.

3.2 Leaders Algorithms in the MSPD
So-called leader algorithms [16] have been devised to coax

follower algorithm to learn less-myopic strategies. Leader
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algorithms for repeated games include the famous tit-for-tat
strategy for the prisoners’ dilemma [2], and the Bully strat-
egy for the chicken matrix game [15]. While most leader al-
gorithms have been developed for matrix games, some leader
algorithms exist for repeated stochastic games [6, 4].

In this paper, we represent the performance leader algo-
rithms in the MSPD with SPaM [4], which learns to cooper-
ate in self play in the MSPD. As such it outperforms MCRL
in self play (Figure 3). SPaM computes both a follower util-
ity function (such as MCRL) and a “social” utility function.
The social utility function assigns high utility to actions that
give its associate a high payoff for doing the “right” thing or
give its associate a low payoff for doing the “wrong” thing.
Additionally, the social utility function gives low utility to
actions that either give its associate a high payoff for doing
the “wrong” thing or give its associate a low payoff for doing
the“right”thing. Once computed, SPaM combines the social
and follower utility functions by computing a set of socially
acceptable actions (based on the social utility function), and
selecting the action from that set with the highest follower
utility. SPaM uses the same action-reduction technique as
MCRL.

In the remainder of this section, we further analyze SPaM
and MCRL in the MSPD to better determine their strengths
and weaknesses.

3.3 Leaders and Followers: Beyond Self Play
We are interested in general-purpose MAL algorithms for

repeated stochastic games that learn quickly and effectively
when associating with a wide range of associates. Effective
MAL algorithms should learn effectively when associating
with leader and follower algorithms, as well as with agents
that do not learn. Thus, we now compare and contrast the
performance of MCRL (with action reduction) and SPaM
when they associate with each other and with Random, a
hand-coded algorithm that randomly selects between gates
1 and 2 in each round, and then moves directly toward that
gate.

Figure 4 shows the asymptotic performance of MCRL and
SPaM when playing the MSPD with these three associates.
The figure shows that SPaM performs effectively when asso-
ciating with both itself and MCRL. In addition to learning
mutual cooperation in self play, it teaches MCRL to coop-
erate, thus resulting in a low average number of steps per
round in both cases. On the other hand, MCRL performs
effectively when it associates with SPaM, but does not learn
effective solutions in self play.

However, MCRL scores better when associating with Ran-
dom than does SPaM. Since Random does not react to its
associates behavior, there is no incentive for an agent to
cooperate with it. Thus, the best thing to do against Ran-
dom is to always defect, which MCRL learns to do (with
some continued exploration since ε = 1). SPaM, on the
other hand, continues to try to teach Random to cooperate,
which causes it to cooperate when it believes that Random
will cooperate, and to defect when it believes that Random
will defect.

These results demonstrate the strengths and weaknesses
of typical leader and follower MAL algorithms. Followers
tend to perform well against teachers and against static asso-
ciates, but they learn (less-effective) myopic solutions when
associating with other followers. Leaders tend to perform
well when associating with followers and (sometimes) other
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Figure 4: Asymptotic number of steps taken by
MCRL and SPaM in the MSPD when associating
with three algorithms. Results are an average of 25
trials. Error bars show a 95% confidence interval on
the mean.

leaders, but they often do not perform well when associating
with algorithms that do not learn.

In addition to not learning effectively against all asso-
ciates, both MCRL and SPaM require domain-specific knowl-
edge to learn effectively in the MSPD. For example, both
algorithms required action reduction to solve the low-level
control problem in order to effectively focus on the high-level
control problem. Furthermore, SPaM requires knowledge of
the payoffs of its associates, as well as high-level knowledge
about what it means to cooperate and defect. These domain-
specific needs limit the generalizability of these learning al-
gorithms.

In the remainder of this paper, we consider the potential
of LbD techniques to achieve general-purpose learning algo-
rithms for repeated stochastic games. In the next section,
we discuss two potential LbD algorithms. We then evalu-
ate the potential of these algorithms to simultaneously and
effectively learn low- and high-level behaviors in self play,
and when associating with followers, leaders, and static al-
gorithms.

4. TWO LBD ALGORITHMS
The two LbD algorithms we describe in this section use

two different genre of machine learning. The first algorithm,
called Imitator, seeks to imitate the teacher’s demonstra-
tions using a simple classification technique. Thus, we an-
ticipate that this algorithm will be effective given (1) ef-
fective demonstrations from a human teacher and (2) good
state features. However, when human input is less-effective,
we anticipate that this algorithm will fail. Thus, the sec-
ond LbD algorithm we consider uses reinforcement learning
to distinguish between effective and ineffective demonstra-
tions. This algorithm, which we call MCRL-LbD, utilizes
the concept of policy reuse [7].

Before describing these algorithms in detail, we note that
neither algorithm uses fundamentally new LbD techniques
to those already proposed in the literature. In fact, both
LbD using reinforcement learning and imitation learning
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(1) D = {}
(2) Repeat while game continues
(3) Observe s
(4) demoRound← Schedule()
(5) if (demoRound)
(6) Observe action a and add (s, a) to D
(7) Otherwise
(8) Select action a according to Eq. 3

Table 1: The Imitator algorithm.

have been used repeatedly in the literature [1]. However,
we are not aware of any prior work in which these or similar
LbD algorithms have been analyzed in repeated stochastic
games.

4.1 Imitator
An LbD algorithm utilizes human demonstrations to de-

rive a strategy given the current state s. This strategy, which
we denote π(s), specifies a probability distribution over the
actions a ∈ A(s), where A(s) is the set of available actions
in state s. Let π(s, a) be the probability assigned to action
a by π(s).

To derive a strategy that imitates the previously observed
behavior of the human teacher, Imitator identifies those
demonstrations which were given in similar states to the
current state s. Formally, let d = (ds, da) be a demonstra-
tion from the human teacher, where ds was the state of the
world when the demonstration was observed, and da was the
observed demonstration. Let D be the set of demonstrations
observed up to the current round. Then, given D and the
current state s, Imitator finds the k samples d ∈ D such that
the distance between s and ds, defined by dist(s, ds), is the
smallest. Let N(s) denote this set of samples.

Given the set N(s), Imitator computes π(s, a) for each
a ∈ A(s) as follows:

π(s, a) =

P
d∈N(s) I(a, da) 1

1+dist(s,ds)2P
n∈N(s)

1
1+dist(s,ds)2

, (3)

where I(a, da) is the indicator function such that

I(a, da) =


1, if a = da

0, otherwise
(4)

In words, the probability π(s, a) depends on (1) the number
of samples d ∈ N(s) for which the demonstrated action da

matches a, and (2) the similarity between the sample state
ds and the current state s.

The Imitator algorithm is summarized in Table 1. Line
(4) of the algorithm makes a call to the function Schedule().
This function returns true when the human controls the be-
havior of the agent (i.e., provides a demonstration) in the
current round, or false when the agent must act on its own
(according to Eq. 3).

In addition to this schedule, Imitator also requires defini-
tions of state and the distance metric dist(si, sj). For the
MSPD, we use the same state definition and distance met-
ric used by MCRL, which is given in the Appendix. We
note the obvious reliance of the algorithm on a good set of
state features and a good distance metric. LbD algorithms
with less reliance on these pre-defined specifications are an
important topic left to future work.

(1) D = {}
(2) t = 1
(3) Repeat while the game continues
(4) Repeat while the current round continues
(5) Observe s
(6) demoRound← Schedule()
(7) if (demoRound)
(8) Observe action a and add (s, a) to D
(9) Otherwise
(10) Compute δ(s)
(11) Select action a according to Eq. 5
(12) Update V (s, a) for each (s, a) visited

in round t - 1
(13) t = t + 1

Table 2: The MCRL-LbD algorithm.

4.2 MCRL-LbD
Unlike Imitator, which assumes that human demonstra-

tions are effective, MCRL-LbD makes its own assessment
of the effectiveness of human demonstrations. To do this,
it mimics human demonstrations (like Imitator) in early
rounds of the game, and uses these experiences to estimate
V (s, a) (like MCRL). As it accumulates experiences, it slowly
shifts its strategy to maximize its payoffs using its utility
estimates V (s) rather than following the human teacher’s
behavior. Thus, in later rounds, new demonstrations serve
only to dictate the agent’s exploration of its action space.

Formally, when the human does not control the agent via
demonstrations, MCRL-LbD uses the following strategy rule
to choose its actions:

π(s, a)←


I(a, a∗) with prob. 1− δ(s)
Eq. 3 otherwise

(5)

where a∗ = arg maxb∈A(s) V (s, b) and δ(s) is the probability
that controls whether MCRL-LbD imitates human demon-
strations or follows its utility estimates. As the number of
human demonstrations from states similar to s increases,
the agent places more confidence in its estimates of V (s, a).
This notion is reflected in the following equation, which we
use to compute δ(s) in the MSPD:

δ(s) = 0.02 +

„
1−max

a∈A
φ(s, a)

«3

(6)

Here, φ(s, a) ∈ [0, 1] is known as the support for the pair
(s, a), and is given by

φ(s, a) =
1
k

X

d∈N(s,a)

1
1 + dist(s, ds)2

. (7)

In this latter equation, N(s, a) is the set of k demonstrations
d ∈ D such that da = a and dist(ds, s) is minimized.

The MCRL-LbD algorithm is summarized in Table 2.

5. RESULTS
Recall that the goal of this paper is to begin to address

the potential of LbD in repeated stochastic games by ad-
dressing two related questions. These questions are: What
kinds of LbD algorithms, if any, are likely to be success-
ful in repeated stochastic games? And, how effective do
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demonstrations need to be for LbD algorithms to facilitate
successful learning in these games.

In this section, we begin to answer these questions using
simulation studies in which Imitator and MCRL-LbD, given
various degrees of demonstration effectiveness, are paired
with other learning algorithms in the MSPD.

5.1 Experimental Setup
We paired both Imitator and MCRL-LbD with themselves,

MCRL (with action reduction), SPaM, and Random in the
MSPD in 5,000 round games. In these simulations, simu-
lated human demonstrations in the form of hand-coded be-
haviors were provided to each LbD algorithm for between
three and six consecutive rounds. The LbD algorithm then
acted autonomously for 10 to 50 consecutive rounds, af-
ter which simulated demonstrations were again provided.
Thus, on average, demonstrations were provided for five out
of every 30 rounds for the first 4,000 rounds of the game.
However, no demonstrations were provided to the LbD al-
gorithms in the final 1,000 rounds of the game.

In order to evaluate the effect of demonstration quality on
the performance of Imitator and MCRL-LbD, we ran simu-
lations using the following three hand-coded demonstration
behaviors:

1. Tit-for-tat (TFT) – This behavior moves directly to-
ward gate 1 if the associate defected in the previous
round, and gate 2 if the associate cooperated in the
previous round. Given its robustness in the iterated
prisoners’ dilemma [2], TFT was chosen to represent
demonstrations from an informed teacher.

2. Random – At the beginning each round, this behav-
ior randomly selects gate 1 or 2 and then moves di-
rectly toward that gate. These demonstrations repre-
sent demonstrations from less-informed human teach-
ers.

3. Learner – This behavior changes over time in attempt
to mimic a human teacher that begins the game as a
less-informed teacher, but then becomes more-informed
as the number of rounds increases. Specifically, Learner
defects with probability one on its first demonstration,
after which it slowly transitions to Random behavior
over the next 25 rounds of demonstrations. It then
slowly evolves into TFT over its next 65 rounds of
demonstrations.

The two LbD algorithms (Imitator and MCRL-Lbd) com-
bined with the three demonstration behaviors (TFT, Ran-
dom, and Learner) combine to form six different learning
agents. We refer to these learning agents as Imitator-TFT,
Imitator-Random, Imitator-Learner, MCRL-TFT, MCRL-
Random, and MCRL-Learner. We now describe the perfor-
mance of each of these agents in the MSPD.

5.2 Findings
We first describe the behavior of the LbD agents in the

MSPD in self play. We then discuss their performance when
paired with MCRL, SPaM, and Random.

5.2.1 Self play.
The average performances of Imitator and MCRL-LbD

in self play given the various forms of human demonstra-
tions are shown in Figure 5. We make several observations
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Figure 5: Average number of steps required by
(a) Imitator and (b) MCRL-LbD, respectively, in
self play given various demonstration behaviors. Re-
sults are a moving-window average of 10 different
simulations.

about these results. First, while Imitator-TFT’s payoffs are
slightly better (less number of steps) in early rounds than
MCRL-TFT’s, both of these agents learn to cooperate in self
play. These results indicate that of these algorithms are able
to effectively solve the high- and low-level decision problems
simultaneously in stochastic games when both of the agent
receive informed demonstrations from a teacher.

Second, when Imitator-TFT was paired with Imitator-
Random, both agents effectively learn the low-level control
problem. However, their high-level decisions (i.e., the gates
they choose) are essentially random, as Imitator-Random
randomly selects which gate it approaches, and Imitator-
TFT then follows suit in the subsequent round. Thus, the
learned behavior of the agents is as if they both played the
matrix game shown in Figure 2(b) randomly, which results
in an average number of steps per round of about 20.75 for
both agents.

However, in most cases, MCRL-TFT and MCRL-Random
learned to cooperate when paired together in the MSPD,
as mutual cooperation emerged in nine of the ten simula-
tions in which these agents were paired. In these simula-
tions, MCRL-TFT learned to act as a leader to coax MCRL-
Random to cooperate. Thus, after 5,000 rounds, on average,
these agents only required between 16 and 17 moves per
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round to reach their goals.
These results suggest that MCRL-LbD is able to act as

both an effective leader and an effective follower, depending
on the demonstrations it receives from the human teacher.
However, at least in self play, these results suggest that Im-
itator is less able to do so.

Third, Figure 5 shows that neither Imitator-Random nor
MCRL-Random are able to consistently learn to cooper-
ate in self play. While Imitator-Random learned to play
randomly in each simulation (in conformance with the pro-
vided demonstrations), MCRL-Random learned mutual de-
fection in five simulations, and mutual cooperation in the
other five simulations. Thus, while MCRL-Random does
not always learn mutual cooperation in self play, it is some-
times able to do so. This suggests that LbD algorithms that
seek to distinguish between informed and less-informed hu-
man demonstrations could potentially learn effectively in re-
peated stochastic games, even when human demonstrations
are imperfect.

Fourth, in self play, Imitator-Learner converged to mu-
tual defection in nine simulations, and mutual cooperation in
one simulation. We initially believed that Imitator-Learner
would converge to mutual cooperation in self play since it
eventually learns to play TFT. However, since TFT defects
against defectors, the behavior produced by mimicking ini-
tial demonstrations caused both agents to continue to de-
fect against each other in most cases. MCRL-Learner was
also unable to consistently learn to cooperate in self play,
though it did better than Imitator-Learner. MCRL-Learner
converged to mutual defection in six simulations, while it
converged to mutual cooperation in the other four simula-
tions.

These latter results suggest that straight-forward imple-
mentations of LbD algorithms may not be suitable for learn-
ing non-myopic solutions in repeated stochastic games when
human teachers learn throughout the course of the repeated
game. However, when demonstrations are informed with re-
spect to low-level control, the evidence of some mutual coop-
eration in MCRL-Learner agents suggests that well-formed
variations of these algorithms could be successful. We leave
further study of this interesting issue to future work.

5.2.2 Associating with other algorithms.
Figure 6 shows the average asymptotic performance of

Imitator and MCRL-LbD given various demonstration be-
haviors against MCRL, SPaM, and Random. Figure 7 also
shows the average percentage of the time the LbD algorithms
cooperated in the final 1,000 rounds when associating with
each agent.

The figures show that none of the LbD agents behaved
ideally against all three associates. However, MCRL-TFT
comes the closest. It successfully learned to cooperate with
SPaM, while learning to defect against Random. Further-
more, it learned mutual cooperation with MCRL in six out
of ten simulations. This latter result falls short of the per-
formance of both Imitator-TFT and Imitator-Learner, which
lead MCRL to always cooperate. However, neither Imitator-
TFT nor Imitator-Learner learn to always defect against
Random.

MCRL-Random and MCRL-Learner also learn to coop-
erate with SPaM and defect against Random, but, they do
not lead MCRL to cooperate as often as does MCRL-TFT.
This suggests that the quality of human demonstrations can
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Figure 6: Average number of steps required by
MCRL-LbD and Imitator given various human in-
puts to reach its goal when associating with MCRL,
SPaM, and Random in the last 1,000 rounds. Re-
sults are an average of 10 trials.
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Figure 7: Percent cooperation in the last 1,000
rounds of MCRL-LbD and Imitator given various
human inputs to reach its goal when associating with
MCRL, SPaM, and Random. Results are an average
of 10 trials.

be of great importance to LbD algorithms, though some evi-
dence of mutual cooperation in simulations between MCRL-
Random and MCRL provides hope that future LbD algo-
rithms could learn to be leaders even when human demon-
strations are not.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we described an investigation into the ef-

fectiveness of learning by demonstration (LbD) in repeated
stochastic games. This investigation was designed to de-
termine the potential of general-purpose LbD algorithms
to help agents learn both high- and low-level skills capa-
ble of producing non-myopic equilibria. To do this, we
described and analyzed the performance of two straight-
forward LbD algorithms in a multi-stage iterated prisoners’
dilemma given various forms of simulated human demonstra-
tions. Results showed that LbD does help learning agents
learn non-myopic equilibrium in repeated stochastic games
when human demonstrations are well-informed. On the other
hand, when human demonstrations are less informed, these
agents do not always learn behavior that produces (less-
successful) non-myopic equilibria. However, it appears that
well-formed variations of LbD algorithms that distinguish
between informed and uninformed demonstrations could learn
non-myopic equilibrium.

Results also suggest that new algorithms and techniques
need to be developed that can learn effectively when human
teachers learn to improve their demonstrations throughout
the course of the repeated game. While good initial behavior
can be critical in some repeated games [2], future general-
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purpose LbD algorithms for repeated games should be able
to better leverage ever-improving demonstrations in order
to learn increasingly successful behavior.

Another area of future work involves creating an appro-
priate context for the human teacher that allows him or her
to provide more-informed demonstrations. When humans
play iterated prisoners’ dilemma games, their performance
is contingent on many factors [12, 17]. Thus, LbD algorithms
could potentially provide information about the game and
associates that would provide a context that facilitates bet-
ter demonstrations.

A third area of important future work involves develop-
ing algorithms that derive state and distance metrics from
human input. In this paper, we assumed that good state
and distance metrics were known, but this is not likely to be
the case in many real-time systems that can be modeled as
repeated stochastic games. In such situations, in addition
to providing demonstrations of desired behavior, the human
can potentially provide information about the underlying
representations that the algorithm should use [5].
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Appendix: State and Distance Metrics
The state features used by each of the algorithms described
in this paper were:

1. (xi, yi, x−i, y−i) – the x, y coordinates of each player,
respectively

2. (g1, g2, g3, g4) – the boolean status of each gate (0 for
closed, 1 for open)

3. (gt−1
i , gt−1

−i ) – the gate each player passed through in
the previous round

4. (dN, dS, dE, dW) – the agent’s proximity to walls or closed
gates in each of the compass directions, where dj = 0
if there was a wall next to the agent in direction j, and
dj = 1 otherwise

The distance between states v and z, denoted dist(v, z), was
defined as:

dist(v, z) = |v.xi − z.xi| + |v.yi − z.yi| +
|v.x−i − z.x−i| + |v.y−i − z.y−i| +
|v.gt−1

i − z.gt−1
i | + |v.gt−1

−i − z.gt−1
−i | +

4X

j=1

2 · |v.gj − z.gj | +
X

j∈A

2 · |v.dj − z.dj |

where A = {N, S, E, W}.
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ABSTRACT
Recent research has demonstrated that considering local in-
teractions among agents in specific parts of the state space,
is a successful way of simplifying the multi-agent learning
process. By taking into account other agents only when
a conflict is possible, an agent can significantly reduce the
state-action space in which it learns. Current approaches,
however, consider only the immediate rewards for detecting
conflicts. This restriction is not suitable for realistic sys-
tems, where rewards can be delayed and often conflicts be-
tween agents become apparent only several time-steps after
an action has been taken.

In this paper, we contribute a reinforcement learning algo-
rithm that learns where a strategic interaction among agents
is needed, several time-steps before the conflict is reflected
by the (immediate) reward signal. To do this, we make use
of statistical information about the future returns and the
state information of the agents. This allows the agent to de-
termine when it should expand its state representation with
information on the other agents and when it can safely rely
on its own state information. We apply our method to a set
of representative grid world problems and show that with
our approach, agents successfully manage to expand their
state information to solve delayed coordination problems.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent systems

General Terms
Algorithms

Keywords
Reinforcement learning, coordination problems, multi-agent
learning

1. INTRODUCTION
Reinforcement Learning (RL) is an unsupervised learning

technique which allows agents to learn policies in initially
unknown, possibly stochastic, environments, steered by a
scalar reward signal they receive from the environment. This
signal can however be delayed, such that agents only see the
effect of a certain action, several timesteps after the action
was performed. Using an appropriate backup diagram which
backpropagates these rewards still ensures convergence to

the optimal policy [12]. When multiple agents are present
in the environment, these guarantees no longer hold, since
the agents now experience a non-stationary environment due
to the influence of other agents [13].

Most multi-agent learning approaches alleviate the prob-
lem by providing the agents with sufficient information about
each other. Generally this information means the state infor-
mation and selected actions of all the other agents. As such,
the state-action space becomes exponential in the number
of agents.

Recent research has illustrated that it is possible to iden-
tify in which situations this extra state information is neces-
sary to obtain good policies [10, 3] or in which states agents
have to explicitly coordinate their actions [9, 8]. These tech-
niques rely on sparse interactions with other agents and only
use the state information of the other agents if this is needed.
In all these techniques however, it is assumed that the need
for coordination is reflected in the immediate reward signal.
However, in RL-systems a delayed reward signal is common.
Likewise, in a multi-agent environment the effect of the joint
action of the agent is often only visible several time steps in
the future.

In this paper we describe an algorithm which will deter-
mine the influence of other agents on the total reward until
termination of the learning episode. By means of statisti-
cal test on this information it is possible to determine when
the agent should take other agents into consideration even
though this is not yet reflected by the immediate reward
signal. By augmenting the state information of the agents
in these situations to include the (local) state of the other
agents, agents can coordinate without always having to learn
in the entire joint-state joint-action space. An example for
such situations are mobile robots which can not cross each
other in small alleys. Coordination should occur at the en-
trance of such an alley, but robots will only observe the
problem when they bump into each other when they are
already in the alley. In our experiments we evaluate a sim-
plified version of this problem using gridworld environments.

The remainder of this paper is organised as follows: in
Section 2 we introduce the necessary background on rein-
forcement learning and describe related work around sparse
interactions. Section 3 describes our approach of solving
coordination problems which are not reflected in the im-
mediate reward. We illustrate our algorithm in Section 4
in various gridworlds. Such environments are a representa-
tive simplified version of mobile robots and are thus a good
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testbed for learning future coordination problems. Finally,
we conclude in Section 5.

2. BACKGROUND INFORMATION

2.1 Reinforcement Learning
Reinforcement Learning (RL) is an approach to solving

a Markov Decision Process (MDP), where an MDP can be
described as follows. Let S = {s1, . . . , sN} be the state space
of a finite Markov chain {xl}l≥0 and let A = {a1, . . . , ar}
be the action set available to the agent. Each combination
of starting state si, action choice ai ∈ A and next state
sj has an associated transition probability T (si, a

i, sj) and
immediate reward R(si, a

i). The goal is to learn a policy
π, which maps an action to each state so that the expected
discounted reward Jπ is maximised:

Jπ ≡ E

[ ∞∑

t=0

γtR(s(t),π(s(t)))

]
(1)

where γ ∈ [0, 1) is the discount factor and expectations are
taken over stochastic rewards and transitions. This goal can
also be expressed using Q-values which explicitly store the
expected discounted reward for every state-action pair:

Q(s, a) = R(s, a) + γ
∑

s′

T (s, a, s′)max
a′

Q(s′, a′) (2)

So in order to find the optimal policy, one can learn this Q-
function and subsequently use greedy action selection over
these values in every state. Watkins described an algorithm
to iteratively approximate the optimal values Q∗. In the
Q-learning algorithm [15], a table consisting of state-action
pairs is stored. Each entry contains the value for Q̂(s, a)
which is the learner’s current hypothesis about the actual
value of Q(s, a). The Q̂-values are updated according to
following update rule:

Q̂(s, a) ← Q̂(s, a) + αt[R(s, a) + γmax
a′

Q̂(s′, a′)− Q̂(s, a)]

(3)
where αt is the learning rate at time step t.
Provided that all state-action pairs are visited infinitely

often and a appropriate learning rate is chosen, the estimates
Q̂ will converge to the optimal values Q∗ [13].

2.2 Markov Game Definition
In a Markov Game, actions are the joint result of multiple

agents choosing an action individually. Ak = {a1
k, . . . , a

r
k}

is now the action set available to agent k, with k : 1 . . . n,
n being the total number of agents present in the system.
Transition probabilities T (si, a

i, sj) now depend on a start-
ing state si, ending state sj and a joint action from state si,
i.e. ai = (ai

1, . . . , a
i
n) with ai

k ∈ Ak. The reward function
Rk(si, a

i) is now individual to each agent k, meaning that
agents can receive different rewards for the same state tran-
sition.

In a special case of the general Markov game framework,
the so-called team games or multi-agent MDPs (MMDPs)
optimal policies still exist [1, 2]. In this case, all agents
share the same reward function and the Markov game is
purely cooperative. This specialisation allows us to define

the optimal policy as the joint agent policy, which maximises
the payoff of all agents. In the non-cooperative case typi-
cally one tries to learn an equilibrium between agent policies
[7, 5, 14]. These systems need each agent to calculate equi-
libria between possible joint actions in every state and as
such assume that each agent retains estimates over all joint
actions in all states.

2.3 Learning with sparse interactions
Recent research around multi-agent reinforcement learn-

ing is trying to make a bridge between a complete indepen-
dent view of the state of the system and a fully cooperative
system where agents share all information. Terms such as
local or sparse interactions where introduced to describe this
new avenue in MARL.

Kok & Vlassis use a sparse representation of the joint
action space of the agents. They describe a set of states
in which the agents explicitly have to coordinate their ac-
tions[9]. These dependencies between the actions of the dif-
ferent agents are represented by coordination graphs (CGs)
[6]. The authors later expanded this approach to also learn
the CGs using statistical information about the obtained
rewards conditioned on the states and actions of the other
agents [8]. This approach always uses complete information
about the joint state space in which the agents are learn-
ing (i.e. agents are fully observable), but only learn using
the joint action space in the coordination states. By observ-
ing the actions taken by other agents in a given state, they
could identify in which states a dependency existed between
the actions selected by the agents. For states in which de-
pendencies were detected and for which a CG existed, the
agents execute a variable elimination algorithm to select a
joint action. This approach however is limited to fully co-
operative MAS.

Spaan and Melo approached the problem of coordination
from a different angle [11]. They introduced a new model
for multi-agent decision making under uncertainty called
interaction-driven Markov games (IDMG). This model con-
tains a set of interaction states which list all the states
in which coordination should occur, or, in other words, in
which states the local state of other agents should be ob-
served. In later work, Melo and Veloso [10] introduced an
algorithm where agents learn in which states they need to
condition their actions on other agents. As such, their ap-
proach can be seen as a way of solving an IDMG where the
states in which coordination is necessary is not specified be-
forehand. To achieve this they augment the action space
of each agent with a pseudo-coordination action. This ac-
tion will perform an active perception step. This could for
instance be a broadcast to the agents to divulge their lo-
cation or using a camera or sensors to detect the location
of the other agents. This active perception step will decide
whether coordination is necessary or if it is safe to ignore the
other agents. Since the penalty of miscoordination is bigger
than the cost of using the active perception, the agents learn
to take this action in the interaction states of the underly-
ing IDMG. This approach solves the coordination problem
by deferring it to the active perception mechanism.

De Hauwere et al. introduced CQ-learning for dealing
with sparse interactions [3]. This algorithm maintains statis-
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tics on the obtained immediate rewards and compares these
against a baseline, which it received from training the agents
independent of each other or by tracking the evolution of the
rewards over time [4]. As such, states in which coordination
should occur, could be identified and the state information
of these states was augmented to include the state informa-
tion of the other agents. These are states in which there
is a statistical significant difference exists between the re-
wards of acting alone in the environment and acting with
multiple agents or when the rewards radically change over
time. This technique can also be seen as a way of solving an
IDMG, since it also learns the states in which coordination
is necessary. However, it does not rely on external mecha-
nisms, such as active perception, to do so.

All of these approaches however assume that states in
which coordination is required can be identified using the
immediate rewards that are received in those states. In the
following section we will describe that this assumption might
not always be met and thus there is need for more general
algorithms capable of dealing with this issue.

3. DELAYED COORDINATION PROBLEMS
One of the main features of reinforcement learning is the

capability of dealing with delays in the reward signal. This
capability has not yet been ported to the framework of sparse
interactions and thus, to the best of our knowledge, all work
in this area depends on a penalty for miscoordination being
available immediately. If we think about mobile robots nav-
igating in an environment, it is possible that there are some
bottleneck areas, such as small alleys where robots will only
see the fact that they had to coordinate when it is already
too late, i.e. both robots are already in the alley. A similar
situation in which coordination must occur is when the order
in which agents enter the goal is important for the reward
they can earn. In the experiments section we will illustrate
our approach in such problem environments. We will begin
by explaining how our approach works.

3.1 FCQ-learning
The technique we describe here uses the same basic prin-

ciples as CQ-learning, but has been adapted to be able to
deal with future coordination problems. This is why we call
our approach FCQ-learning, which stands for Future Coor-
dinating Q-learning. As for CQ-learning, the idea is that
agents learn in which of their local states they will augment
there state information to incorporate the information of
other agents and use a more global system state. This idea
is represented in Figure 1. The local states for one agent are
represented at the bottom. In its local states labeled 4 and 6
it augmented its information to include global state informa-
tion illustrated at the top. For now, we use the same initial
assumption of CQ-learning, that the agents have already
learnt an optimal single agent policy when acting alone in
the environment and that their Q-values have converged to
the correct values.

Given this information the most important challenge is
detecting in which states, the state information must be aug-
mented. FCQ-learning makes use of a Kolmogorov-Smirnov
test for goodness of fit to trigger an initial sampling phase.
This statistical test can determine the significance of the dif-
ference between a given population of samples and a spec-
ified distribution. Since the agents have converged to the

Augment

32

7 98

5

1

4 6

4-1 4-2 4-3 6-1 6-2

Figure 1: The state information of states 4 and 6 is
augmented to incorporate additional information in
order to solve coordination problems.

correct Q-values, the algorithm will compare the evolution
of the Q-values when multiple agents are present to the val-
ues it learned when acting alone in the environment. In
Figure 2 we show the states in which this statistical test
has observed a difference. The darker the shade of the cell,
the earlier the change was detected. The goal was to reach
the cell marked by G starting from the cell marked by an
x. We first allowed the agent to learn the correct Q-values,
after which we significantly lowered the value of the reward
received for reaching the goal. The KS-test detected this
change first in the Q-values of the cell adjacent to the goal
state. Since the Q-values were still being updated, the KS-
test continued detecting changes further down, back to the
initial state of the agent.

G

Figure 2: Order in which the KS-test detects
changes in the Q-values due to a change in the re-
ward signal. The darker the shade of the cell the
earlier the change was detected.

If a change is detected in the Q-values of a state of an
agent, it will start observing the local state information
of the other agents and start sampling the rewards it col-
lects, starting from that local state until termination of the
episode. Using these samples, the agent can perform a Fried-
mann statistical test which can identify the significance of
the difference between the different local states of the other
agents for its own local state. This principle is represented
in Figure 3. Agent 1 starts sampling the rewards until ter-
mination of the episode in local state xi based on the local
state information yi,yj and yk of Agent 2. If enough samples
have been collected and if a significant difference is detected
among these states, the state information for the local state
of agent 1 is augmented to include the information of the
other agent for which the difference was detected (as illus-
trated in Figure 1).

The action selection works as follows. The agent will check
if its current local state is a state which has been augmented
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Figure 3: Agent 1 in local state xi is collecting re-
wards until termination of the episode based on the
local state information of agent 2.

to include the state information of other agents. If so, it will
check if it is actually in the augmented state. This means
that it will observe the global state to determine if it con-
tains its augmented state. If this is the case, it will condition
its action based on this augmented state information, other-
wise it can act independently using only its own local state
information. If its local state information has never been
augmented it can also act without taking the other agents
into consideration.

We distinguish two cases for updating the Q-values:

1. An agent is in a state in which it used the global state
information to select an action. In this situation the
following update rule is used:

Qj
k(js, ak) ← (1− αt)Q

j
k(js, ak) + αt[r(js, ak) (4)

+γmaxa′
k
Q(s′, a′

k)]

where Qk stands for the Q-table containing the local
states, and Qj

k contains the joint states using global
information (js). Note that this second Q-table is ini-
tially empty. The Q-values of the local states of an
agent are used to bootstrap the Q-values of the states
that were augmented with global state information.

2. An agent is in a state in which it selected an action
using only its local state information. In this case the
Q-learning rule of Equation 3 is used with only local
state information.

We do not consider the case where we use the Q-table with
joint states to bootstrap in our update scheme since at timestep
t an agent can not know at that time that it will be in a state
where coordination will be necessary at timestep t+1 as this
will also depend on he actions of other agents.

For every augmented state a confidence value is main-
tained which indicates how certain the algorithm is that this
is indeed a state in which coordination might be beneficial.
This value is updated at every visit of the local state. If
when this local state is visited, the state information about
the other agents corresponds to the augmented state, the
confidence value is increased, otherwise it is decreased. This
ensures that states, where an agent would request state in-
formation about another agent, but where this state infor-
mation does not correspond to the augmented state, are re-
duced again to states where agents only consider local state

Algorithm 1 FCQ-Learning algorithm for agent k

1: Initialise Q′
k to Qkand Qj

k to zero;
2: while true do
3: if ∀ Agents k, state sk of Agent k is a safe state then
4: Select ak for Agent k from Q′

k

5: else
6: Select ak for Agent k from Qj

k
7: end if
8: if KS-test fails to reject the hypothesis that the Q-

values of Q′
k are the same as Qk then

9: Mark state sk as a sample state
10: if sk is a sample state then
11: Store the state information of other agents,

and collect the rewards until termination of the
episode

12: if enough samples have been collected then
13: perform Friedmann test on the samples for the

state information of the other agents. If the
test indicates a significant difference, augment
sk to include state information of the other
agents

14: end if
15: end if
16: end if
17: if sk is an augmented state for Agent k then
18: Update Qj

k(js) ← (1 − αt)Q
j
k(js) + αt[r(js, ak) +

γmaxa Q(s′k), a]
19: increment confidence value for sk
20: else
21: Update Qk(s) ← (1 − αt)Qk(s) + αt[r(js, ak) +

γmaxak
′ Q(s′k, a

′
k)].

22: decrease confidence value for sk if extra state infor-
mation was requested

23: end if
24: end while

information. By reducing this value less than we increase it,
we built some fault tolerance against too quickly reducing
states again.
The algorithm is more formally described in Algorithm 1.

3.2 FCQ-learning with uninitialised agents
Having initialised agents beforehand who have learned the

correct Q-values to complete their task is an ideal situation,
since agents can transfer the knowledge they learned in a
single agent setting to a multi-agent setting, adapting only
their policy when they have to. This is of course not al-
ways possible. This is why we propose a simple variant of
FCQ-learning. In the original algorithm, the initialised Q-
values are being used for the KS-test which will detect in
which states the agent should start sampling rewards. As
such, this test prevents sampling rewards and state informa-
tion about the other agents in those states where this is not
necessary, since it allows an agent to only sample in those
states that are being visited by the current policy and in
which a change has been detected. If this compact set of
states in which coordination problems should be explored
can not be obtained, it is possibly to collect samples for ev-
ery state-action pair at every timestep. This results in a lot
more data to run statistical tests on, most of which will be
irrelevant. The changes in Algorithm 1 for this variant are
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to remove the lines 8 to 10.

3.3 Discussion of the algorithms
The main idea of our approach is to detect coordination

problems, several timesteps ahead of the actual occurrence
of the problem. In FCQ-learning such coordination prob-
lems are then solved by expanding the state information an
agent can use to select an action. We would like to empha-
size that for some problems, this approach might not yield in
the wanted result, since this information might still be insuf-
ficient, or because selecting the actions independently is not
sufficient and agents need to coordinate. Other possibilities
are to communicate with the other agent, or even use domain
knowledge about the task at hand, to get a more descriptive
representation of the problem or to rely on joint-action tech-
niques such as joint-action learners [2]. Vice versa, problem
situations can also be used to update or refine this domain
knowledge.

4. EXPERIMENTAL RESULTS
The testbed for our algorithms is a set of two and three-

agent gridworld games with varying difficulty in terms of size
complexity. We compared our algorithms to independent Q-
learners (Indep) that learned without any information about
the presence of other agents in the environment, joint-state
learners (JS), which received the joint location of the agents
as state information but chose their actions independently
and with LoC (described in Section 2.3). The environments
we used are depicted in Figure 4. The initial position of the
agents is marked by an x, the goal is indicated with a dot. If
the agents have different goals, like in environment d, there
goal is marked in the same colour as their initial position.

To create more complex coordination problems in these
environments, agents can not only collide with each other in
every cell, but in environments a,b and c the agents also have
to enter the goal location in a specific order. In environment
d it is clear that if agents adopt the shortest path to the goal,
they collide in the middle of the corridor.

All experiments were run for 20.000 episodes (an episode
was completed when all agents were in the goal state) using
a learning rate of 0.1 with a time limit of 500.000 steps per
episode. Exploration was regulated using a fixed ε-greedy
policy with ε = 0.1. If agents collided they remained in the
same location and received a penalty for colliding. On all
other occasions, transitions and rewards were deterministic.
The results described in the remainder of this paragraph are
the running averages over the last 50 episodes taken over 50
independent runs. In LoC we could not implement a form of
virtual sensory input to detect when coordination was neces-
sary for the active perception step, so we used a list of joint
states. In each of these joint states, coordination with the
other agent would be better than to play independent1. For
environment d for instance (Bottleneck), this list contained
all the joint states in and around the tunnel at the middle,
such that agents could still back out of the tunnel and let
the other pass first.

We will begin by describing the results in terms of the
reward obtained per episode, the number of steps needed to
1As such this implementation could be seen as incorporat-
ing domain knowledge in the algorithm. If this knowledge
however is not available, an active perception function that
always returns true, might be a good option.

(a) Grid Game 2

(c) TunnelToGoal (d) Bottleneck

(b) TunnelToGoal_3

Figure 4: The different games used throughout the
experiments. An x marks the initial position of an
agent, a dot marks the goal position. If there are
different goals, the start state and goal state are
those where the colors match. In environments a to
c the agents had to reach the goal in a certain order
to obtain the maximum reward.

reach the goal and the number of collisions that occurred
each episode. These results are shown in Figure 5. Each
row contains the results of one environment, using the same
order as in Figure 4, Grid game 2 at the top, followed by
TunnelToGoal 3, TunnelToGoal on the third row and finally
Bottleneck at the bottom. The first column represents the
rewards that were obtained during an episode. Note that
the maximum reachable value is 20 if agents did not collide
with each other or with a wall. The second column contains
the graphs for the number of steps both agents needed to
complete the episode, i.e. both agents reached their goal.
The third column displays how often agents collided with
each other per episode.

In Grid game 2 the independent learners do not manage
to find a collision free policy. This is to be expected since
in their initial state they have to choose between bumping
into a wall, or taking the action that will get them closer to
the goal, but also results in a penalty for colliding with the
other agent. They still manage to reach the goal eventually
due to the randomness of the action selection strategy. Joint
state learners quickly learned a good policy without much
problems. The size of the joint state space of this environ-
ment contains after all only 81 states. Agents using the LoC
algorithm did not learn to use their COORDINATE action
in their initial state and hence did not manage to act with-
out colliding or reach the goal in the correct order. Both
variants of FCQ-learning however did find a collision free
policy and reached the goal in order as soon as they man-
aged to collect enough samples. Before this, their behaviour
was similar to the agents using only their local state infor-
mation. The results for TunnelToGoal, depicted in the third
row, are very similar.

When three agents are present in the environment, as in
the TunnelToGoal 3 environment we quickly see a decay in
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(a) (b) (c)

Figure 5: The rows represent the different gridworlds in which we tested the algorithm, Grid game 2 on top,
followed by TunnelToGoal 3, TunnelToGoal and Bottleneck. In the columns we show (a) the rewards per
episode, (b) the number of steps per episode and (c) the collisions per episode.
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the performance of the joint state learners, who need a lot
more time to find a collision free policy. Note that we show
the first 10.000 episodes for this environment, compared to
the first 3.000 for Grid game 2 and TunnelToGoal. We also
see a decrease in the performance for the FCQ-learning al-
gorithms. This is caused by their coordination strategy. As
explained in Section 3.3, using joint-state information for se-
lecting an action, while bootstrapping with the Q-values of
the independent states is not the best choice, since the val-
ues of the independent states might not represent the correct
value of the next joint state. A more advanced coordination
strategy, that also includes future joint states or that is even
based on communication might give better results.

For the Bottleneck environment we cannot present any
result for the independent learners. This is because the
ε-greedy exploration strategy they use, does not provide
enough exploration to find a policy to the goal, since this
is blocked by the penalties it receives by entering the tunnel
in the middle. Contrary to TunnelToGoal, 1 move is not
enough to avoid collisions here so independent learners can
not escape collisions due to an exploratory move. Coordi-
nation must occur before both agents are in the corridor.
In this environment we clearly see that FCQ-learning finds
a shorter path and obtains higher average rewards than all
other approaches. LoC does not manage to learn anything
useful in this environment since this algorithm is steered by
the immediate reward to learn for which states coordination
is necessary. But at the moment the collision occurs, and
the immediate reward reflects that a bad action was selected,
the agents might already be inside the corridor and can not
learn to exit it again to let one agent pass.

In general we can conclude that FCQ-learning performs
very similar or slightly better than joint state learners for
relative small environments. When playing in larger envi-
ronments such as TunnelToGoal 3 which contains 166.375
possible joint states, FCQ-learning outperforms the other
algorithms in terms of number of episodes needed to con-
verge and quality of the solution.

Furthermore we also compared the number of times the
algorithms selected an action using joint state information.
For the independent learners this number is always 0, whereas
for the joint state learners this number equals the number
of steps needed to finish the episode. For the remaining
algorithms the results are shown in Figure 6.

All algorithms learn a compact set of states in which they
use state information about other agents to select their ac-
tions, except for LoC in the Bottleneck environment. The
reason for this is the same as why it needed a large num-
ber of steps to complete an episode. The immediate reward
does not reflect the coordination problems, so agents will
learn to coordinate in the wrong states, and still receive
negative rewards. As mentioned earlier in the discussion of
the algorithms (Section 3.3), using a different coordination
technique for LoC than just selecting an action in the joint
state space might be a good idea.

5. CONCLUSION
In this paper we presented an algorithm that learns in

which states of the state space an agent needs to include
knowledge or state information about other agents in or-
der to avoid coordination problems that might occur in the

(a) (b)

(c) (d)

Figure 6: Number of times an algorithm used joint
state information to select an action for environ-
ments (a) Grid game 2, (b) TunnelToGoal 3, (c)
TunnelToGoal and (d) Bottleneck.

future. Situations in which such problems occur are for in-
stance when multiple autonomous robots are required to go
through a small corridor where they can only pass one at
a time. By means of statistical tests on the obtained re-
wards and the local state information of other agents, FCQ-
learning is capable of leaning in which states it has to aug-
ment its state information in order to select actions using
this augmented state information. We have shown two vari-
ants on this algorithm which perform similar in terms of the
quality of the found solution, but have a different computa-
tional complexity in terms of processing power and memory
usage, due to the number of samples collected and on which
statistical tests have to be performed.

To the best of our knowledge, our technique is the first
one to use sparse interactions with other agents to solve
delayed coordination problems. Using sparse interactions
has already been proven to have many advantages in recent
literature. When solving problems in which delayed coor-
dination problems occur, sparse interactions also prove to
be beneficial. The biggest improvement could be seen in
our experiments using three agents. The learning process of
agents who always use the joint state space was very slow
compared to our approach based on sparse interactions.

We would like to emphasize that our algorithm can be
seen in a broader way as a technique of detecting when the
current policy fails due to the interference of other agents
and in which situations this interference takes place. As
such it can be put in the wider context of robocup, where
a team of agents can evaluate its strategy and learn a set
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of preconditions about the other team to detect when their
strategy fails. This is an interesting application to explore
in future research.

Another interesting avenue for future research is exploring
the possibilities for detecting situations where coordination
among multiple agents is necessary, such as intersections.
On the other hand, detecting these situations is only half
the work done. These conflicts also have to be solved, which
results in exploring different coordination techniques than
merely selecting actions using more state information.
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ABSTRACT

In this paper we introduce a Multi-agent system that uses
Reinforcement Learning (RL) techniques to learn local nav-
igational behaviors to simulate virtual pedestrian groups.
The aim of the paper is to study empirically the validity
of RL to learn agent-based navigation controllers and their
transfer capabilities when they are used in simulation envi-
ronments with a higher number of agents than in the learned
scenario. Two RL algorithms which use Vector Quantiza-
tion (VQ) as the generalization method for the space state
are presented. Both strategies are focused on obtaining a
good vector quantizier that represents adequately the state
space of the agents. We empirically state the convergence of
both methods in our navigational Multi-agent learning do-
main. Besides, we use validation tools of pedestrian models
to analyze the simulation results in the context of pedes-
trian dynamics. The simulations carried out, scaling up the
number of agents in our environment (a closed room with a
door through which the agents have to leave), have revealed
that the basic characteristics of pedestrian movements have
been learned.

Categories and Subject Descriptors

I.2.11, I.2.6, I.6.5 [Multiagent Systems, Learning, Sim-
ulation and Modeling]:

General Terms

Experimentation

Keywords

Reinforcement learning, pedestrian simulation, state gener-
alization

1. INTRODUCTION
Controlling the movement of virtual agents groups to pro-

vide simulations with behavioral quality is an active research
problem that has mainly attracted Artificial Intelligence and
Computer Graphics techniques and methods. Multi-agent
systems are a natural framework for this problem. A Multi-
agent system is composed of autonomous entities named
agents that interact each other sharing a common environ-
ment which they represent through a state and upon which
they act with actions. In the simulation field they can be

used in simulating virtual crowds or group-level behaviors
for computer games, training systems and for studying archi-
tectural and urban designs. They constitute a local or agent-
based approach to the problem opposite to macroscopic ap-
proaches in which the state of the system is described by
mass densities and a corresponding locally averaged veloc-
ity [13]. In local approaches, the complexity of the problem,
the dynamic environment or the possibility that unforeseen
situations occur, make the solutions based on a priori de-
sign (like rule-based systems), difficult to tune. Besides, the
replication of the same rule set in all the agents can create
unrealistic simulations. In this context, Multi-agent learn-
ing systems, where each agent learns individually from its
own experience, are an interesting alternative.

A RL-based agent learns by interacting with the environ-
ment. In response to the actions of the agent, the environ-
ment provides it with a reward signal that models the task
to be learned. In the value-based family of RL algorithms,
rewards are used by the agent to estimate the value of the
decisions that it is taking in specific states. In this paper we
focus on Temporal Difference Methods (TD Methods) [16]
which have proven useful in a variety of domains.

Markov games are the natural extension of the single RL
problem for Multi-agent RL systems (MARL). This frame-
work allows to define the whole range of collective situations
from fully-cooperative to non-cooperative games including
general-sum games (see [10] for a review). Markov games
use the joint actions (the cartesian product of the agents’
actions) as part of the definition of the state-action space.
Unfortunately, the exponential dependence in the number of
agents and the necessity of converging to equilibrium as a
basic stability requirement of these games, increase consider-
ably the computational cost of the learning process. On the
other hand, Multi-agent systems where the agents are inde-
pendent learners have been studied in several works. In [11]
and [14] independent RL processes are associated to robots
in a group for grasping and navigation problems. [3] em-
pirically shows that convergence is possible in cooperative
settings for a Multi-agent system with independent RL pro-
cesses. Recently, a small case study that applies independent
learning in a Multi-agent RL problem for crowd simulation
has been presented [18].

In this paper we study the feasibility of building a com-
plex MARL oriented to learn realistic behaviors of virtual
agents for pedestrian simulation. The aim is to introduce RL
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as a useful technique to find an agent-based control model
to cope with the problem of simulating virtual agents that
behave as groups of pedestrians. Realistic behavior means
that agents appear to behave as pedestrians but they do not
need necessarily conform to the characteristics of the models
of real pedestrians. However, we use validation tools used
in pedestrian models to quantify the overlaps between these
models and our results.

Learning how to navigate in a continuous space towards
a goal in an environment with other agents and using colli-
sion detection is not a trivial task. We propose two different
learning approaches based on the Vector Quantization for
Q-Learning(VQQL) [4] algorithm. These approaches are fo-
cused on finding a good state generalization as a key point to
get realistic behaviors for the virtual agents. Also we study
the scalability of the system respect to the number of agents.
The strategy consists on learning the navigational problem
with a moderate number of agents, and then transfer the
value functions [17] to scale up to many agents.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the domain and the problem modeling. Sec-
tion 3 describes the state generalization method. Section 4
describes the two algorithmic approaches to the learning
problem. Section 5 focuses on the learning experiments.
Section 6 shows the simulation and scaling results. Section 7
concludes and suggests future work.

2. THE DOMAIN
The scenario consist of a group of agents inside a closed

room with a door. The agents have to learn to reach the door
and leave the room. The agents detect collisions with other
agents and walls which are relevant in the learning process.
In order to resemble the model of pedestrians, the agents are
constrained to move on the plane with a maximum velocity
of 2.5 m/s. The environment is modeled like a two dimen-
sional continuous plane where the room, defined with five
walls, is placed. The cinematic module of the environment
moves the agents across the plane using the velocity vector
of each agent. The cinematic module actuates following a
configurable clock signal so that the user can specify the
number of decisions per second that the agent must take.

The definition of the states that the agents sensorize fol-
lows a deictic representation approach. The central premise
underlying a deictic representation is that the agent only reg-
isters information about objects that are relevant to the task
at hand [1] [19]. The selection of features that represent the
state for the agent is critic for the success of learning. We
have chosen features that provide local information about
the agent cinematic state, the neighbor agents and the near-
est walls, modeling the real situation of a pedestrian inside
a group. As a result, the state for each agent is described
by the features showed in Figure 1 and Table 1.

The number of sensorized neighbor agents and neighbor
objects is configurable. In our evaluation, the number of
sensorized neighbors is 7 and the number of sensorized static
objects (walls) is 2. Therefore, in the evaluation, the state
space has 28 features.

The agents’ actions consist on modifying its vector veloc-
ity. The agent must set two values in each decision: the
change ratio of the velocity module (increasing or reducing)
and the change ratio of the angle (positive or negative) to
modify the vector velocity. There are 8 different ratios plus
the ‘no operation” option for both the module and the angle

Sag Velocity module of the agent.
Av Angle of the velocity vector relative to the refer-

ence line.
Dgoal Distance to the goal.
Sreli Relative scalar velocity of the i-th nearest neigh-

bor.
Dagi Distance to the i-th nearest neighbor.
Aagi Angle of the position of the i-th nearest neighbor

relative to the reference line.
Dobj Distance to the j-th nearest static object (walls).
Aobj Angle of the position of the j-th nearest static

object relative to the reference line.

Table 1: Description of the features of the agent’s
state. The reference line joins the agent’s position
with its goal position.

Figure 1: Agent’s state description

resulting in 81 possible actions.

3. STATE SPACE GENERALIZATION
The states are generalized using Vector Quantization (VQ),

which has demonstrated to be an accurate approach for
state space generalization and transfer learning [6]. A vec-
tor quantizier VQ of dimension K and size N is a mapping
from a vector space (in this paper the state space) in the K-
dimensional euclidean space, Rk, into a finite set C contain-
ing N states. A sensorized state is aggregated to its nearest
state in C, also named its prototype. Thus given C and a
state x ∈ Rk then VQ(x) = arg miny∈C{dist(x, y)}. The
prototypes, that is, the members of C, are found using the
Generalized Lloyd Algorithm (K-Means) and together with
the euclidean metric, define the Voronoi regions of the state
space [4, 6]. Vector Quantization makes possible the use of
a table for representing the value function and therefore the
use of classic TD algorithms like Q-learning or Sarsa.

Vector Quantization for Q-Learning(VQQL) [4] is a learn-
ing schema that uses VQ as the generalization method for
states and the tabular version of Q-Learning for the learning
process. Tabular Q-Learning uses a table (named Q) to rep-
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resent the value function and takes as entries, a prototype
and an action. For each entry of Q, the expected accumu-
lated reward of being in state s and doing action a is stored.
The process of updating the Q table with a new immediate
reward rt at instant t is named credit assignment operation,
and it is performed using Equation 1.

Q(st, at) = Q(st, at)+α[rt+1+γ max
a

{Q(st+1, a)}−Q(st, at)]

(1)
Where γ models the importance of the future reward and α
is the learning rate. In VQQL, given a sensorized state st

and a selected action at, the Q table entry to be updated is
(VQ(st), at).

The use of VQ introduces two problems. The first one is to
decide the number of prototypes to use, or the resolution of
the state space. Typically, a very coarse discretization com-
posed of a reduced number of prototypes has not enough ex-
pressiveness to represent optimal value functions. Too many
states introduces again the generalization problem, although
with a finite number of states. Therefore, VQQL has proven
in most of the domains tested that intermediate values of the
number of prototypes are more accurate than low or high
values. In our experiments, different number of prototypes
have been proved (k = 512, 1024, 2048, 4096, 8192, 16384).
The best results were achieved with 4096 prototypes, and
this configuration is used in all the experiments (despite bet-
ter results may be obtained with different values).

The second problem of VQQL is how to generate the train-
ing data to learn the prototypes. The most straightforward
way to get them is by generating random movements of the
learning agents. However, in many domains, like crowd nav-
igation, random movements of the agents generate biased
data which are not representative enough to learn accurate
value functions, as will be demonstrated empirically later.
To deal with this problem we have defined two different
learning strategies. Iterative VQQL (IT-VQQL) strategy
and Incremental VQQL (IN-VQQL) strategy, which are de-
scribed next.

4. INCREMENTALVQQLAND ITERATIVE

VQQL
The Iterative VQQL strategy, shown in Figure 2 is in-

spired in the adaptive K-Means family of algorithms. In
adaptive K-Means, given a set of patterns or a density of
probability that generate them, the problem is to define an
optimal criterion that bias the centroids towards an optimal
partition [2]. In our approach, the dataset generation proce-
dure or the density of probability that generates the data is
biased towards a better model of the problem by using a bet-
ter learned policy. In IT-VQQL, we fix a number of agents
(specifically 20) and the learning task is refined in each it-
eration of the learning process. We use the value functions
learned in iteration step i to build a simulation and gather a
new dataset. With the new dataset, the K-Means algorithm
is used and a new set of prototypes is found, therefore a new
V i+1

Q is implemented. In the next iteration, the agents learn

from scratch using the new vector quantizier V m+1

Q , and so
on. In the first iteration, the agents make a random walk,
since the value functions are initialized to zero for all the
state and action pairs. The IT-VQQL strategy ends when a
maximum number of iterations are performed.

Multi-agent IT-VQQL

Entry: The number of learning agents, p, a deictic repre-
sentation of the state space S ∈ Rk, and a finite action
space A.

1. Set Q1
0, . . . , Q

p
0 = 0, ∀s ∈ Rk, ∀a ∈ A

2. Set i = 0

3. Repeat:

(a) Set i = i + 1

(b) Generate a new vector quantizer, V i
Q:

• Generate a training set, T i, by recording
states visited by the agents when follow-
ing and ε-greedy exploration strategy over
Q1

i−1, . . . , Q
p
i−1

• Learn V i
Q by executing GLA algorithm over

T i

(c) Learn the new Q tables for each agent,
Q1

i , . . . , Q
p
i , following the Q-Learning algorithm

4. Until end condition is satisfied

Return: Q1
r, . . . , Q

p
r and V i

Q

Figure 2: Iterative VQQL Algorithm

IT-VQQL is a general algorithm that could be used to
learn action policies in many domains. However, crowd nav-
igation has an additional challenge, which is the difficulty to
solve the problem from scratch. The Incremental VQQL
strategy is based on a classic approach of transfer learn-
ing in which the problem to be learned is approximated by
solving easier problems. The problem of finding a good set
of prototypes that model the state space of a domain with
a high number of agents (specifically 20) is tackled solving
successive problems with less agents. Therefore, when us-
ing IN-VQQL, learning experiments are incremental in the
number of agents. IN-VQQL, shown in Figure 3, can be seen
as an adaptation of IT-VQQL, where the number of agents
in the environment is increased in each iteration.

If the state representation of an agent includes features re-
garding with the neighbor agents, the IN-VQQL algorithm
has the additional difficulty that the state spaces in the in-
cremental learning processes have different dimensionalities.
When the problem has been learned with m agents, and the
next incremental problem with m+1 agents uses a state rep-
resentation that sensorizes more neighbor agents, we need
to use transfer learning techniques as performed for transfer
learning in domains like Keepaway [5]. Specifically, a projec-
tion is used in order to get a new dataset in the new m + 1-
agents problem state space included in Rr. A projection can
be understood as a selection of features Γ : Rr → Rs where
r > s. The projection makes possible to use the vector quan-
tizier V s

Q and the value functions Q1
m, . . . , Qm

m learned in the
m-agents problem, with the new higher-dimensional state
space to collect data. Besides, the learned value functions
are replicated to be used by the new set of agents. After
the new dataset is obtained, a new set of prototypes using
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Multi-agent IN-VQQL

Entry: The number of learning agents, p, a deictic repre-
sentation of the state space S ∈ Rk, and a finite action
space A.

1. Set Q1
0, ∀s ∈ Rk, ∀a ∈ A

2. Set i = 0

3. Repeat:

(a) Set i = i + 1

(b) Generate a new vector quantizer, V i
Q:

• Generate a training set, T i, by record-
ing states visited by the current learning
agents when following and ε-greedy explo-
ration strategy over Q1

i−1, . . . , Q
i−1
i−1, Q

i
i =

Qj
i−1 j ∈ [1, i − 1].

• Learn V i
Q by executing GLA over T i

• Set V i
Q = V i

Q ∪ V i−1

Q

(c) Learn the new Q tables for each agent, Q1
i , . . . , Q

i
i,

following the Q-Learning algorithm

4. Until i = r

Return: Q1
r, . . . , Q

p
r and V r

Q

Figure 3: Incremental VQQL Algorithm

VQ is calculated and, therefore, a new vector quantizier V r
Q

is implemented to be used in a new learning process from
scratch.

5. LEARNING EXPERIMENTS
In our Multi-agent learning system, the agents learn si-

multaneously. This means that the learning process is di-
vided in episodes or trials and in each point of the process,
all the agents are in the same trial. Besides, considering
each trial of the learning process divided in discrete deci-
sion slots, all active agents take their decisions in the same
decision slot before going to the next one. These character-
istics warrant that the environment varies softly along the
process, a desiderable property for the convergence of the
learning process. In general, the number of decisions in a
trial is different for each agent. An agent ends its trial when
it reaches the door or after a fixed number of decisions have
been taken.

The virtual environment is a 60x100 rectangle with an
aperture that represents the door in the center of one of the
small sides. The limits of the rectangle are defined by five
walls. The agents are placed in the center of a bounding cir-
cumference with radius 0.4 meters that represents the area
occupied by the “body” of the agent. The environment has
collision detection; therefore the agents can crash against the
walls and with other agents. In a collision, the agent stops
and the other object or agent cannot go into the bounding
circumference of the agent. The cinematic module moves
each agent in the room according to its velocity. The sim-
ulation is divided in cycles limited by decision steps. The

number of decisions per second is a parameter of the system.
The state space is the same for all the agents. As stated in
Section 2, the maximum number of sensorized neighbors is
7 and the fixed number of sensorized walls is 2. There is not
a maximum distance of perception.

The behavior of the agents is modeled according to the
immediate rewards listed in Table 2. As it can be seen,
the payoff function reinforces the crash situations because
the prevention of collisions is the main task that a naviga-
tion controller must take into account. Our model is related
to pedestrian models that pay special attention to interac-
tions between pedestrians like the Social-Force [7] and the
Optimal-velocity models [12]. In these models, the velocity
vector of a pedestrian is modified using forces parameterized
by a desired velocity and the proximity to other pedestrians.
In our model, where most of the state features are related
with the sensorization of neighbor agents and walls, the neg-
ative immediate rewards provides information to learn the
mentioned forces in terms of selecting an adequate action.

Crash against other agent -4.0
Crash against a wall -15.0
Reach the goal +100.0
Default 0.0

Table 2: Inmediate rewards

5.1 Learning experiment for IT-VQQL
We have fixed a number of 20 learning agents for our ex-

periments. It is a figure that trades-off the complexity of the
problem to learn, and the necessity of a minimum density
of agents to characterize the variety of possible interactions
that can appear in a group. The dataset is gathered us-
ing a ε-greedy policy with ε = 0.07 to palliate overfiting
problems. Before using the K-Means algorithm, the col-
lected data are standardized (each feature has zero mean
and standard deviation equal to 1). We have detected em-
pirically that our vector quantiziers did not give satisfac-
tory results when the number of active agents became less
than 5, mainly in the earlier iterations of the learning pro-
cess. This can be explained considering the scarce number
of occurrences for these configurations compared with data
gathered from higher number of agents (mainly 20). The
datasets obtained in simulation have few data with these
configurations, creating a bad representation of the state
space. Although the solution of this problem is a question
of performing more iterations until we get a suitable dataset,
we have improved the speed of learning by filling the void
features of the state representation for these cases with ran-
dom valid values. In this case, the vector quantizier always
works with states with a full set of features. Thus, the be-
havior of these situations can be improved biasing the filling
values using domain knowledge. The IN-VQQL algorithm
has not this problem because the final vector quantizier is
the union of quantiziers specialized in a specific number of
agents. The curves and simulation results for the IT-VQQL
in this paper have been performed using this approach. The
performance curves for the iterative learning processes of IT-
VQQL are displayed in Figure 4. The number of trials is low
in the first curves because the goal is to get a better dataset
for the vector quantizier. The learning processes uses a ε-
greedy policy as the exploratory policy. The configuration
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of the main parameters of Q-learning for the curve 14 (the
highest) are shown in Table 3. We use as a reference the
learning curve of the basic VQQL algorithm with the same
parameters shown in Table 3 excepting the α parameter that
has the value α = 0.25, consistent with the high number of
trials carried out by this algorithm (see Figure 5).

Figure 4: IT-VQQL performance curves for a 20
agents learning process. The longest curve corre-
sponds to the reference curve for the VQQL al-
gorithm. The rest of the curves, from down to
up looking at the end of the curve: iterations
1, 2, 3, 5, 6, 4, 7, 8, 9, 11, 10, 12, 13, 15, 14. The curves are
averages of the data for 20 learning processes

Importance of future rewards (γ) 0.91
Initial rate for Exploratory policy (ε) 0.4
Learning rate (α) 0.35
Decitions per second 1

Table 3: Q-Learning parameters for IN-VQQL and
IT-VQQL

The whole plot of the iterative learning process is dis-
played in Figure 5. These curves are those displayed in
Figure 4. Note the improvement in performance along the
increasing number of trials. The saw tooth pattern of the
plot is due to the fact that learning in each iteration of IT-
VQQL is performed from scratch, without transferring the
value function from iteration to iteration 1.

5.2 Learning experiment for IN-VQQL
In the incremental approach the state space is variable

in number of dimensions at different stages of the learning
process (i.e. given a learning setting of 20 agents, at the
beginning the state space will include the features to de-
scribe 7 neighbor agents, but when only one agent remains,
its state space does not have features for the description of
neighbors).

1Performing a value function transfer from each iteration to
the following could be an interesting idea. However, given
the vector quantizer used in each iteration is different, such
transfer is not trivial
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Figure 5: The whole learning process for the IT-
VQQL strategy. The curves are sorted by iteration
number inside the learning process. The dashed
curve is for the VQQL algorithm.

In our incremental learning setting, the sequence of ex-
periments performed has the following number of agents:
1, 2, 3, 4, 5, 6, 7, 8, 10 and 20. The learning performance curves
are plotted in Figure 6 together with the reference curve of
VQQL (the lower curve). Note that, given a finite number of
trials, the performance decreases with increasing the num-
ber of agents. It is caused by the increment of complexity of
the problem to be learned. Therefore, the number of trials
of the curves is incremented gradually with the number of
learning agents. Besides, it is not necessary to await the
asymptotic behavior of the curve, when the actual goal is
to find a good (not optimal) vector quantizier that improves
what already exists.
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Figure 6: IN-VQQL performance curves for 20
agents learning process. From up to down with
less than 1.5 105 trials, curves with number of agents
1, 2, 3, 4, 5, 6, 7, 8. From down to up, with number of
trials greater than 1.2 105, the curves for 10, 20 agents.
The dashed curve of final value near 0.4, corresponds
to the VQQL algorithm. The curves are averages of
the data for 20 learning processes.

The whole plot of the incremental learning process is dis-
played in Figure 7 and, also, the curve for the VQQL algo-
rithm is plotted as a reference. Note the difference in the
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number of trials with Figure 5. Each element of the saw
tooth pattern is a learning process with different number
of agents. Although it seems to be an increment of perfor-
mance from curve 8 to 9, it does not probably occur in the
asymptotic regime.
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Figure 7: The whole iterative learning process for
the IN-VQQL strategy. The curves are sorted by
iteration number inside the learning process. The
dashed curve is for the VQQL algorithm.

The configuration of the main parameters of Q-learning
for the curve 10 corresponding to 20 agents is the same that
the iterative curve number 14 and the VQQL reference al-
gorithm and it is shown in Table 3.

6. SIMULATION RESULTS
In this section, we show the fundamental diagrams used in

pedestrian dynamics to analyze the simulated behavior ob-
tained by the RL agents. Pedestrian dynamics models usu-
ally focus on the qualitative reproduction of empirically ob-
served collective phenomena, like the dynamical formation of
lanes, bottlenecks, etc. In this sense, the main quantitative
characteristics for the description of pedestrian streams are
flow and density. Therefore, the main diagrams are derived
from these functions. According to the definition shown in
[8], the local density is obtained by averaging over a circular
region of radius R. The local density at place $r = (x, y) and
time t was measured as

ρ(r, t) =
X

j

f($rj(t) − $r) (2)

where $rj(t) are the positions of the pedestrians j in the
surrounding of $r and

f($rj(t) − $r) =
1

πR2
exp[−||$rj − $r||2/R2] (3)

is a Gaussian, distance-dependent weight function. The
local speeds have been defined via the weighted average

$S($r, t) =

P

j $vjf($rj(t) − $r)
P

j f($rj(t) − $r)
(4)

while the flow has been determined according to the fluid-
dynamic formula

$Q($r, t) = ρ($r, t)$S($r, t) (5)

Figure 8 shows this fundamental diagram for both IN/IT-
VQQL in a simulation with 100 agents randomly placed in
the environment. The first diagram (left column) shows the
average of the local speeds $S($r, t) as a function of the local
density ρ(r, t) for both cases. We have measured the local
density capturing the positions of the agents in a circumfer-
ence (R = 1) near the exit, so we guarantee a minimum flow
during the simulation.

Fundamental Diagrams
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Figure 8: Fundamental diagrams

The low density values offered (ρ < 1.2) are likely due
to the same effect described in [15] which states that when
the initial positions of the pedestrians are not near from
the bottleneck center, the density will decrease due to the
movement from the initial position to this point, resulting
in a smaller density. Furthermore, our aim here is neither
a deep characterization of our agent nor a comparison with
the other pedestrian models/data, but to analyze the simu-
lation results from a behavioral point of view when scaling
up the models learned. The scalability problem (increas-
ing the number of agents without losing behavioral quality
during the simulation) involves a good generalization of the
learned model, as it must face new situations, that properly
managed, will lead it to reach its goal.

The first column on Figure 8 shows how the RL controllers
(IT/IN) have learned to reduce their speed according to the
density perceived. In both cases, the data plotted indicate
that different kind of speed-reduction behaviors can be pro-
duced while the fitting functions (used only for clarity pur-
pose) let us to observe that the shape of the curves and their
tendency can be considered as reasonable.

However, there are several differences among the RL mod-
els shown in this column. Firstly, the IT model shows a re-
duced number of points comparing with the IN model. The
points plotted here can be viewed as different navigational
decisions (speed regulations) which lead the agents to reach
their goal. In this sense, the IN learned controllers seem to
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be able to better generalize and scale the problem. On the
other side, the IT model results at this diagram are possibly
indicating that an overfiting situation may be happening,
due to an excessive dependency of the situations learned.
To confirm this hypothesis we have measured the number of
agents that finally evacuate the environment in both meth-
ods. The results are shown in tables 4 and 5.

Agents Fails (%) σ v (m/s) σ
20 21.5 5.7 1.64 0.82
40 13.95 3.99 1.57 0.83
60 13.63 4.42 1.40 0.83
80 19.13 3.67 1.27 0.81
100 26.75 4.35 1.19 0.79

Table 4: Performance results and average velocity
with the number of agents for the IN-VQQL algo-
rithm. Data are averages of 20 agents and 100 trials.

Agents Fails (%) σ v(m/s) σ
20 9.25 2.68 1.99 0.73
40 25.32 3.62 1.84 0.77
60 39.1 5.25 1.69 0.79
80 46.42 4.59 1.62 0.78
100 56.98 4.8 1.54 0.77

Table 5: Performance results and average velocity
with the number of agents for the IT-VQQL algo-
rithm. Data are averages of 20 agents and 100 trials.

A better performance of IT-VQQL vs. IN-VQQL has been
observed in the learning case (20 agents). The performance
of IT-VQQL is degradated faster than in the IN-VQQL when
the number of agents grows, and generalization capabilities
are needed. Obviously, the VQ state generalizer has a de-
cisive influence in these results. Also note the higher aver-
aged velocity of the agents that use the IT-VQQL learned
controllers that can produce problems when scaling up the
number of agents.

The second column on Figure 8 shows the relation among
the simulated densities and flows. The diagram reveals that
for the densities considered, the maximum flow is still no
reached so the growing trend of the curve has not ended.

We have also calculated the density maps associated to
these simulations. Here, the plane is tiled with a grid and
the number of agents per tile unit is counted. Therefore, it
is a histogram that represents the number of agents per tile
during the simulation. It gives the information of the level
of occupation of different zones of the plane so it is interest-
ing to know the bottleneck shape (Figures 9 and 10). These
figures show the typical concentration around the exit and
a continuous increasing flow towards the door, represented
as a gray degradation. An interesting thing to see is that
isolated dark grey tiles can be interpreted as places where
crashes occur and, therefore, where the agents are stopped.
Note that the greatest concentration of these isolated tiles
are near the walls, where crashes are more likely. The com-
parison between both RL models reveals the area where the
IT-VQQL model crashes frequently near the goal. This can
prevent the IT-VQQL model agents from reaching the goal.

Density IN-VQQL
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Figure 9: IN-VQQL Density Map for 100 agents.
Points display data of 100 simulations.
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Figure 10: IT-VQQL Density Map for 100 agents.
Points display data of 100 simulations.

7. CONCLUSIONS AND FUTUREWORK

• The experiments show that the Multi-agent navigation
problem can be faced using reinforcement learning al-
gorithms. The results have revealed that important
characteristics, like the speed control, remain when
scaling to a larger number of agents without additional
learning.

• The results indicate that the IT-VQQL learning schema
learns faster than the IN-VQQL schema. However,
when scaling up the number of agents, the IT-VQQL
schema overfits the learning problem giving worse sim-
ulation results than the IN-VQQl schema. This could
be caused by the successive refinements over the same
learning scenario in IT-VQQL.
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• Classic TD single-agent algorithms like Q-learning have
been proven to converge in the limit with discrete state
and action spaces and stationary environments [9]. Con-
vergence in the limit means in practice that the learned
value functions are suboptimal. This fact does not
need to be necessarily a handicap in pedestrian sim-
ulations because, in real life, people’s behaviors do
not use optimality as the main criteria. On the other
hand, Multi-agent learning systems are inherently non-
stationary. The convergence is a domain property that
needs to be studied case-by-case. With our results we
have proved empirically that RL techniques give suffi-
cient quality in this domain and, likely, its use could
be extended to other pedestrian scenarios.

• Future work:

It is possible to unify the two learning schemas in a sin-
gle algorithmic schema. Based on the IN-VQQL algo-
rithm it is possible to consider each incremental prob-
lem subjected to a refining process. Considering the
results exposed above, a trade-off should be applied in
this scheme between adaptation and specialization ca-
pabilities. Besides, classic strategies of transfer learn-
ing could also be applied for the VQ state generalizer
and for the learned value functions in different steps of
this unified schema. Other aspect of interest is the use
of other state generalization methods (i.e. tile coding)
to compare the results.

On the other hand it is necessary to study the response
in simulation with a learning scenario with more agents.
That is, to study the performance when the number
of learning agents are 40, 80, etc. It is plausible to
expect an asymptotic behavior in the scaling capabil-
ities in this context. Other interesting subject is the
study of the capability of RL in the emergence of col-
lective pedestrian behaviors. There are several classic
well studied self-organization phenomenon that appear
in pedestrian groups inside certain scenarios (like the
zipper effect in front of a bottleneck or the formation
of lanes inside a corridor) that could be studied.
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ABSTRACT
In this paper, we address the problem of norm adaptation
using Bayesian reinforcement learning. Individuals develop
their normative framework via interaction with their sur-
rounding environment (including other individuals). Devel-
oping a prior belief set about a certain domain can improve
an agent’s learning process to adjust its norms to the new
environment’s dynamics. An agent acquires the domain-
dependent knowledge in a certain environment and later
reuses them in different settings. A norm can be seen as
a rule of action derived from the agent’s beliefs. This work
is novel as it represents normative behaviors as probabilities
over belief sets. We propose a two-level learning framework
to learn the values of normative actions and set them as
prior knowledge, when agents are confident about them, to
feed them back to their belief sets. Our evaluation shows
that a normative agent, having been trained in an initial en-
vironment, is able to adjust its beliefs about the dynamics
and behavioral norms in a new environment. Therefore, it
converges to the optimal policy more quickly, especially in
the early stages of learning.

Categories and Subject Descriptors
I.2.11 [Intelligent agents]: Miscellaneous

General Terms
Design, Algorithms, Experimentation

Keywords
Learning and Adaptation::Single agent Learning, Agreement
Technologies::Norms

1. INTRODUCTION
Norms or conventions routinely guide the choice of behav-

iors in human societies, and conformity to norms reduces
social frictions, relieves the cognitive load on humans, and
facilitates coordination and decision making [21][17]. These
norms differ in various situations depending on the environ-
ment’s dynamics, behaviors of other agents (including peers
and superiors), and many other factors affecting them. For
instance, in a crisis situation caused by flooding or an earth-
quake, first responders are responsible to control and (some-
times) enforce some rules to the people such as evacuating
∗This work has been done while at the University of New
Brunswick

the area or preventing people from looting shops. However, a
first responder might decide to let people break into a drug
store (against his believed norms) in order to get medical
equipment.

When facing different environments, agents tend to spend
some time understanding and learning the interaction pat-
terns to adapt to the new setting. Developing a prior belief
set about a certain domain, can improve an agent’s learning
process to adjust its normative behaviors with regards to the
new environment’s dynamics. An agent’s ability to quickly
adjust its beliefs and norms to different environments highly
affects its performance of learning and, as a result, increases
the overall utility of the agent. Thus, the process of deci-
sion making can be enhanced by applying predefined norms.
However, finding a reliable set of norms or rules to initially
code into agents is a highly difficult task, as conditions of
the world are almost always distinct. By applying learning
techniques, in fact, we can equip agents with proper tools for
setting up new norms in every different environment. These
norms emerge throughout the process of decision making in
different simulations and can be used or updated by receiv-
ing new perception signals from the environment. Regard-
less of the type and origins of norms, they play an important
part in forming and alternating beliefs in human societies.
Actions are derived from the beliefs about the normative
behaviors [19].

We propose a two-level learning algorithm to extract the
behavioral norms and reuse them as domain knowledge in
future environmental settings. Determining where and when
to extract norms is done using probability distributions of
the state-action pairs. We would like to investigate the
following questions: How effective is adding prior domain
knowledge when facing environments with different settings?
Having learned some behavioral norms, how much faster
does an agent adapt to an environment?

The remainder of this paper is as follows: Section 2 gives
a broad overview of the literature on norms, beliefs, and
Bayesian model learning. In Section 3, we propose our
two-level learning framework to extract norms using the
Bayesian model learning technique and then discuss our al-
gorithm for adaptation to change in new environments. Sec-
tion 4 demonstrates our experimental results to find answers
for the motivating questions. Finally, we give a conclusion
to our work and propose the future work and possible direc-
tions for this area of research in Section 5.
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2. BACKGROUND AND RELATED WORK

2.1 Norms and Beliefs
Dignum [15] describes two distinguished types of norms:

deontic norms (that prescribe desired/required behavior) and
social norms (that emerge from collective behavior). De-
ontic norms can be imposed either explicitly in a society
(like a law) or as the effect of an order from higher au-
thority. On the other hand, social norms are established
more implicitly. These norms are followed by individuals
based on their discretion and their understanding of the cir-
cumstances and directly affect individuals’ behaviors and
actions. Since norms arise based on interactions with the
environment, they are very likely to be changed when there
is a change in interaction patterns, goals, and beliefs. Also,
conditions will change, which may lead to different behavior
of the agents. Three different views are considered by Conte
et al. [9]: norms as constraints on behavior, norms as ends
(goals), and norms as obligations (rules).

Norm autonomy is the highest level of autonomy, and it
refers to social impacts on agents’ choices. At this level,
agents choose which goals are legitimate to pursue based on
a given set of norms. Such agents (called norm autonomous
agents or deliberative normative agents [7][4]) may judge the
legitimacy of their own and other agents’ goals. Verhagen
[24] defines autonomy at this level as the agent’s capabil-
ity to change its norm system when a goal conflict arises,
thereby changing priorities of goals, abandoning a goal, gen-
erating another goal, etc. Dignum [14] provides another view
of autonomy at the norm level, allowing the agents to violate
a norm in order to adhere to a private goal that they con-
sider to be more profitable, including in such consideration
the negative value of the repercussions such a violation may
have. Less restrictive sets of social norms may be chosen by
agents, however, an agent is only allowed to deviate from a
norm if it cannot act under the current limitations [5][6].

In [24], Verhagen views agents as having personal norms
and coalition norms. The coalition norms are subjective;
therefore, every agent has an individual view on each norm
of the coalition. The personal norms emerge from inter-
action with the environment. The coalition norms emerge
from interaction with the other agents. From the learning
perspective, this can be viewed as emergence of norms (from
a game-theoretic point of view) and acceptance of norms
(individual level of agents) [23][10]. While researchers have
studied the emergence of norms in agent populations, they
typically assume access to a significant amount of global
knowledge.

In the absence of a centralized authority or when facing
an environment with different settings, an agent should ad-
just its belief set to be able to act properly. Sen et al. in
[21] studied the emergence of norms in a game-theoretic ap-
proach where individual agents learn social norms by in-
teractions with other agents. Moreover, in [20], the emer-
gence of social norms in heterogenous agent societies has
been studied to explore the evolution of social conventions
based on repeated distributed interactions between agents
in a society. The authors considered that norms evolve as
agents learn from their interactions with other agents in the
society using multi-agent reinforcement learning algorithms
[21]. Most of the work in this area fall short in considering
norms as changeable elements depending on the environ-
ment. Norm adaptation uses an agents domain knowledge

to adjust more quickly in new environments. Unlike [16] that
studies norm adaptation and effects of thinking in norms us-
ing computational approaches, we are interested in using the
very natural way of learning used by humans. In Bayesian
reinforcement learning (RL), agents are able to gather in-
formation about different environments and settings. After
many experiences, this information leads to knowledge of
the domain in which the agents are mostly working.

2.2 Bayesian Model Learning
The Bayesian approach is a principled, non problem-specific

approach that provides an optimal solution to the action
choice problem in RL. The optimal solution to the RL ac-
tion selection problem or optimal learning, is the pattern of
behavior that maximizes performance over the entire history
of interactions of an agent with the world [12][11][8]. With
Bayesian learning techniques, an agent stores a probability
distribution over all possible models, in the form of a belief
state [11]. The underlying (unknown) MDP, thus, induces a
belief-state MDP. The transition function from belief state
to belief state is defined by Bayes’ rule, with the observa-
tions being the state and reward signals arising from each
environmental transition.

Assume an agent is learning to control a stochastic en-
vironment modeled as a Markov Decision Process (MDP),
which is a 4-tuple 〈S,A, PT , PR〉 with finite state and action
sets S, A, transition dynamics PT and reward model PR.
The agent is charged with constructing an optimal Marko-
vian policy π : S $→ A that maximizes the expected sum of
future discounted rewards over an infinite horizon. Letting
V ∗(s) at each s ∈ S denote the optimal expected discounted
reward achievable from state s and Q∗(s, a) denote the value
of executing action a at s, we have the standard Bellman
equations [1]:

V ∗(s) = maxa∈AQ
∗(s, a) (1)

Q∗(s, a) = EPR(s,a,r)[r|s, a] + γ
∑

s′ ∈ S

PT (s, a, s
′)V ∗(s′) (2)

At each step in the environment, the learner maintains
an estimated MDP 〈S,A, P̂T , P̂R〉 based on an experience
tuple of 〈s, a, t, r〉; that is, at each step in the environment
the learner starts at state s, chooses an action a, and then
observes a new state t and a reward of r. This MDP then can
be solved at each stage approximately or precisely depending
on an agent’s familiarity with state and reward distributions.

A Bayesian agent models the uncertainty about the envi-
ronment (discovering PT and PR) and takes these uncertain-
ties into account when calculating value functions. In theory,
once the uncertainty is fully incorporated into the model,
acting greedily with respect to these value functions is the
optimal policy for the agent, the policy that will enable it
to optimize its performance while learning. Bayesian explo-
ration is the optimal solution to the exploration-exploitation
problem [18][2].

In the Bayesian approach a belief state over the possible
MDPs is maintained. A belief state defines a probability
density. Bayesian methods assume some prior density P
over possible dynamics D and reward distributions R, which
is updated with an experience tuple 〈s, a, t, r〉. Given this
experience tuple, one can compute a posterior belief state us-
ing Bayes’ rule. We are looking for the posterior over reward
model distribution and also the posterior for the transition
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model, given an observed history of H. Considering H to be
the state-action history of the observer, an agent can com-
pute the posterior P (T,R|H) to determine an appropriate
action at each stage. As the density P is the product of two
other densities P (T s,a) and P (Rs,a), that is, the probability
density of choosing action a in state s and the probability
density of getting the reward of r by choosing an action a
when in state s, we should make an assumption to simplify
this calculation.

Based on [11], our prior satisfies parameter independence,
and thus the prior distribution over the parameters of each
local probability term in the MDP is independent of the
prior over the others. This means that the density P is
factored over R and T with P (T |R) being the product of
independent local densities P (T s,a) and P (Rs,a) for each
transition and each reward distribution. It turns out that
this form is maintained as we incorporate evidence. The
learning agent uses the formulation of [11] to update these
estimates using Bayes’ rule:

P (T s,a|Hs,a) = zP (Hs,a|T s,a)P (T s,a)

P (Rs,a|Hs,a) = zP (Hs,a|Rs,a)P (Rs,a)
(3)

where Hs,a is the history of taking action a in state s, and
z is a normalizing constant.

It has been assumed that each density P (T s,a) and P (Rs,a)
is a Dirichlet [13] as the transition and reward models are
discrete multinomials. These priors are conjugate, and thus
the posterior after each observed experience tuple will also
be a Dirichlet distribution [11][8].

3. THE PROPOSED TWO-LEVEL LEARN-
ING FRAMEWORK

Two types of learning are considered in this framework:
first, learning while the agent is exploring and exploiting
rewards in each episode1 of the same simulation (in the
same environment) and trying to learn the environment’s
dynamics, and second, a high-level approach to capture the
domain’s specific normative behaviors. This framework is
able to learn the system’s dynamics, specifically the envi-
ronment’s dynamics and interaction patterns for each set-
ting. A key factor for optimizing the performance of agents
is to provide them with knowledge about the dynamics of
the environment and behavioral norms.

Figure 1: Simple sketch of the two-level learning
framework

1An episode is every trial in which agents begin in the start
state and finishes in the goal state.

Behavioral norms about the environment’s dynamics can
be extracted using the probability distribution of each state-
action pair after agents get into a reasonable confidence rate
about their beliefs. Afterwards, this knowledge gets updated
and added to all the previous data gained in the past expe-
riences. The overall knowledge represents the agent’s belief
about the normative actions and can be incorporated into
agents as prior knowledge.

3.1 Dynamic Norm Generation
Traditionally, a norm can be an obligation, a permission,

or a prohibition. However, this interpretation of norms is not
entirely demonstrative of real-world normative frameworks.
This is due to the fact that one can assign different values to
norms. In different situations the value assigned to a norm
is subject to change. For instance, shaking hands after a
sports match is an example of a social norm. But, what is
the likelihood of a frustrated player shaking hand after he
loses the match? This illustrates the fact that the values
assigned to the norms are subject to change under different
circumstances.

This is a probabilistic model of expressing norms where a
prohibited norm is a norm with low level probability to hap-
pen, however, its probability is not necessarily 0 (although
it is close to 0). Similarly, an obligated norm can have a
probability close to 1. By modeling norms as probabilistic
values over a belief set, we are able to extract these values
via reinforcement learning techniques.

As individual agents are able to adapt their behavior or
strategy based on the interaction they have with the environ-
ment or other agents [20], the knowledge they gain through-
out this process can be assessed to form their normative
behaviors.

3.2 Transition and Reward Densities
In our Bayesian learning model, each density P (T s,a) and

P (Rs,a) is a Dirichlet. However, Dirichlet distributions make
the implementation and tracking of the algorithm quite hard,
since the transition model will be sparse with only a few
states that can result from a particular action at a particu-
lar state. If the state space is large, learning with a Dirich-
let prior can require many examples to recognize that most
possible states are highly unlikely [11][22]. To avoid these
problems, we use beta distributions for every state and ac-
tion. In Bayesian statistics, it can be seen as the posterior
distribution of the parameter p of a binomial distribution
after observing α− 1 independent events with probability p
and β−1 with probability 1−p, if there is no other informa-
tion regarding the distribution of p. We consider a binomial
probability distribution for every state-action pair. These
distributions actually show us the number of times in which
every state-action pair succeeds or fails during the simula-
tion. We need to maintain the number of times, N(s

a−→ s′),
state s is successful to make transition to s′ when action a
is chosen, and similarly, N(s

a−→ r) for rewards. With the
prior distributions over the parameters of the MDP, these
counts define a posterior distribution over MDPs.

3.3 Adapting to Change
Every domain has its specific set of norms (known as be-

havioral norms) that can be generally valid in other envi-
ronments. There is a mutual connection between behavioral
norms and domain-dependent knowledge in reinforcement
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learning. Norms can be extracted through reinforcement
learning (RL), and RL can be improved by incorporating be-
havioral norms as prior probability distributions into learn-
ing agents.

Agents gain knowledge about the environment’s dynamics
using dynamic programming iterations and updates. By vis-
iting every state or choosing actions, agents gradually build
up their knowledge about the environment as probability
distributions over state-action pairs. This information can
be considered to be incomplete or false during the simula-
tion until agents are confident about their beliefs. From
the exploration-exploitation perspective, this confidence is
gained when the agent has knowledge about most of the
states and the permissible actions in them or the value of
each action in every state. Thus, agents are said to be confi-
dent on their beliefs when (1) The algorithm has converged
into an optimal policy (or cumulative reward becomes steady
in the recent episodes), and (2) Most of the states have been
visited by the agent.

In the first condition, it is not really easy to understand
whether an algorithm will converge to an optimal policy or
not. It needs complicated and time-consuming mathemati-
cal calculations. Bayesian dynamic programming is proved
to converge to an optimal policy using some optimization
techniques [3]. However, as it is complicated to check this
criterion, another approach will be used. The algorithm be-
low shows the steps of our proposed framework:

1. Start an episode

2. For each (s, a) pair compute V ∗ and Q∗

3. Update estimates using Bayes’ rule

• P (T s,a|Hs,a) = zP (Hs,a|T s,a)P (T s,a)

• P (Rs,a|Hs,a) = zP (Hs,a|Rs,a)P (Rs,a)

4. Check the confidence level

• LOE > threshold

• CRn = [
∑n−1

i=n−k CRi/k]± (1− LOE + ε)

5. If Confidence = true then update prior knowledge:
priornew = posteriorold + priorold

6. Go back to 1.

We introduce an element to check at the end of each
episode. When an episode is finished, the goal state is
reached, and we are able to look at the cumulative reward
gained in that episode by our agent. If this cumulative re-
ward is in a steady state in recent episodes, it is a good
measure to be sure that our Bayesian algorithm is in a reli-
able state, meaning that the algorithm is in equilibrium.

The amount of cumulative reward or the number of steps
to the goal is not solely a good metric to measure the level of
confidence. What also is important for agents is to make sure
that they have at least some sort of sufficient information
about the world and the majority of states. This can be
measured by counting the number of explored states so far,
indicating how many states have been visited by an agent.

The level of exploration (LOE) is defined simply as fol-
lows:

LOE =
E
N

(4)

where E is the number of explored states so far in the
simulation, and N is the total number of states. LOE is
always smaller than or equal to 1. As it gets closer to 1,
more states of the environment have been explored.

It is proposed that the agent can be confident about its
beliefs when LOE ! 0.9 and CRn satisfies equation 5.

CRn = [
n−1∑

i=n−k

CRi/k]± (1− LOE + ε) (5)

where CRn is the cumulative reward gained in the nth

episode, and k is a desired number of recent episodes. Based
on every experiment and the size of the state-space, one can
decide to consider k previous cumulative rewards to average
them (In this paper k = 5).

The cumulative reward gained in each episode can be dif-
ferent even after converging to the optimal policy, as the
agent is always in the learning process and may explore some
other states. Therefore, the value of CRn should fall into
a plus/minus interval to be acceptable. This interval de-
pends on the value of LOE. If not many of the states have
been explored so far, the interval gets larger. The cumula-
tive rewards become closer and closer to each other when
the majority of states have been covered. In a nutshell, the
more states that have been explored by an agent, the smaller
the interval gets. Although LOE rarely reaches 1, the ε in
this formula makes sure that there is always an interval even
when 1− LOE is equal to 0.

When an agent meets these two conditions and becomes
confident about its information on normative behaviors, it
should simply update its belief state and add this newly
learned knowledge to its knowledge base.

3.4 Updating Prior Knowledge as Norms
Updating the Bayes parameter estimate with new infor-

mation is easy by using the concept of a conjugate prior.
The parameter estimate obtained from the previous episodes
should be combined with the estimates an agent already has
about its states and actions. Essentially, a conjugate prior
allows agents to represent the Bayes parameter estimation
formula in simple terms using the beta parameters a and b:

aposterior = aprior + adata

bposterior = bprior + bdata
(6)

We consider state-action pairs as binomial probability dis-
tributions showing us the number of times each state-action
succeeds or fails. The beta parameters in beta distributions
are the number of successes and the number of failures. The
posterior is simply given by adding the prior parameter and
data parameter (the number of successful transitions from
state s to s′ under a). Updating norms is exactly the same as
updating posteriors. Agents are continuously building and
updating their posteriors using the aforementioned process.
As this information is obtained by agents interacting in the
environment (to solve a problem or to pursue a goal), it
is representative of the environment’s dynamics and norms.
When an agent is in a confident level about its knowledge, it
keeps a copy of the reward and transition models and then
updates its posterior by replacing the posterior gained so far
with the prior distribution of tested data (data parameter).
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Figure 2: A small grid world

4. EXPERIMENTAL RESULTS AND ANAL-
YSIS

Although real-world problems of norm generation are much
more complicated, representing the world and its dynamics
in a simple way can help us show a proof of concept. Fur-
thermore, every decision-making situation where a learning
agent needs to take an action under uncertainty can be easily
mapped into a belief-state MDP. Then, using the proposed
techniques, an agent will be able to solve the MDP, learn
the model of the environment, and generate norms if the
confidence level is reached. The implementation framework
that is used to code these ideas is the one developed by Dr.
Sutton in the RLAI lab2. This framework provides the basic
tools to implement any desired RL algorithm.

Figure 2 shows the maze problem. The agent can move
left, right, up, or down by one square in the maze. Every
action is representative of a behavioral norm. If it attempts
to move into a wall, its action has no effect. The problem
is to find a navigation path from the start state (‘S’) to
the goal state (‘G’) with the fewest possible steps and the
highest cumulative reward. The agent also should gather
as much information as possible about the environment and
its dynamics. When it reaches the goal, the agent receives
a reward equal to 1, and the problem is then reset. Any
step has a small negative reward of −0.05. The agent’s goal
is to find the optimal policy that maximizes its cumulative
reward. The problem is made more difficult by assuming
that the agent occasionally “slips” and moves in a direction
perpendicular to the desired direction (with probability 0.1
in each perpendicular direction).

4.1 Experiments
This section experiments with the effectiveness of the two-

level reinforcement learning framework to dynamically gen-
erate norms. An agent’s behavior in any environment is
tightly dependent on its understanding of the surrounding
environment.

Three different experiments are considered with two agents:
a Bayesian agent with no prior knowledge about the dynam-
ics and behavioral norms, and a Bayesian agent with some
training in a different environment under the same domain.
The environment’s dynamics and its behavioral norms will
be changed to study which agent better performs when con-
fronting a new setting.

An interesting approach to study this difference is to con-

2http://rlai.cs.ualberta.ca/

sider the differences based on the percentage of changes in
settings. This way we are able to study the effectiveness of
the learned normative behaviors in different environments.
Nonetheless, as it was emphasized earlier, the domain in
which the agent is finding an optimal policy to the goal state
will remain the same. In these experiments, changes can oc-
cur in every element of the environment such as blocked
states, goal states, start states, etc. Three different experi-
ments have been done based on the percentage of changes:

• Only change in the goal state

• 20% change in the environment

• 50% change of dynamics + change in the goal state

Figure 3.a shows the performance of both agents with re-
gard to cumulative rewards gained in each episode. The
results are averages over 10 runs. Both of the agents find
the best policy quickly in fewer than 15 trials. The nor-
mative agent starts up with a worse result compared to the
Bayesian agent with no prior. This is due to the fact that
the normative agent needs some exploration to adapt its be-
liefs to the new environment’s dynamics, so it has to update
its beliefs about the environment. However, after the first
exploration of the map it rapidly finds the best policy and
converges after 5 trials, as opposed to the Bayesian agent
with no training.

In the very first trials of learning, the normative agent
starts with finding the new optimal policy. On the other
hand, some fluctuations in early phases show the agent’s
attempts to explore the new environment and find out the
dynamics as well as exploiting the already known states.
In the early learning process, the increase in performance
of the normative agent with prior knowledge is statistically
significant, compared to the Bayesian agent with no knowl-
edge about the normative actions. A trained agent learns
the probability of finding the goal state in each zone of the
map so the agent focuses more on the areas that have been
learned to be more probable in containing the goal state.
In this example, this leads the agent to focus more on the
central areas and avoid exploring behind the blocked states
in the right and left sides of the map.

As shown in Figure 3.c , we notice some increased drop in
the value of cumulative reward in the first episodes because
the agent is adapting its belief state under the new dynamics.
However, the value of cumulative reward rises more rapidly
and converges to the value of the optimal policy after about
5 episodes. This proves the effectiveness of having prior
knowledge about the domain-dependent norms even if the
environment changes over time and the agent wants to start
learning in a world with a different dynamics and different
normative system. A paired t-test demonstrates that the
difference in means between the normative agent and the
agent with no prior knowledge is statistically significant (p
= 0.022022831).

4.2 Lessons Learned
The performance of an agent, whether it has prior knowl-

edge about the normative behaviors or not, converges at
some point at a reasonable pace. However, an important
factor is to avoid any random exploratory behavior at the
beginning of a simulation. As we can see in Figure 4, the
normative agent performs better both in gaining cumulative
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Figure 3: Different percentages of change: a. goal change, b. 20% change, c. 50% change + goal change
(averages over 10 runs)

Figure 4: The comparison between different values
of change

reward and finding the optimal policy to the goal. The more
similar the new environment is to the environment where the
agent has been trained, the faster and better it can adjust
its beliefs to the new situations.

One interesting observation is that whenever the goal state
is very different from the one learned by the agent, the agent
has to violate or alter its beliefs to the new situations. Thus,
this adjustment process makes the agent override some of
the behavioral norms and spend some time exploring the
new environment. However, as the agent carries its domain
knowledge from the previous experiments, it easily adapts its
normative system after just a couple of episodes. The more
it takes for the agent to find the best policy, the more it
should update/alter its belief systems on behavioral norms.

The figure shows that the agent performs better in an
environment with 20% change in its dynamics. On the other
hand, when the agent has to perform in an environment
with 50% change, it takes more stages at the beginning for
the agent to adjust its knowledge to the new environment.
Moreover, in the early stages of learning the agent gets a
highly negative reward as the goal has been changed, and
the agent needs to explore and unlearn its current beliefs.

5. CONCLUSION AND FUTURE WORK
In this paper, we addressed the problem of norm adapta-

tion using Bayesian reinforcement learning. Individuals de-
velop their normative framework via interaction with their
surrounding environment (including other individuals). De-
veloping a prior belief set about a certain domain can im-
prove an agent’s learning process to adjust its normative
behaviors with regards to the new environment’s dynamics.
Our evaluation demonstrated that even in the environments
with 50 percent of change in the states and the goal state,
agents can quickly adapt to new settings using the practiced
prior knowledge in a different environment, and thus, the
performance of the agent increases, especially in the early
stages of the learning process.

As a future work, we would like to run the same experi-
ments in the environments with lower percentage of similar-
ities. It would be interesting to show how fast agents can
adapt to the new environment, and if having some knowl-
edge about the domain will help the learning agents im-
prove under different dynamics. We will experiment envi-
ronments with higher percentage of differences in terms of
states, goals, and transition functions to point out a thresh-
old where after that the agent will perform similar to an
agent with no prior knowledge.

Another direction might be to consider inconsistency in
norms when norms have different origins. As it was shown
in [15], the problem of these conflicts is not that they are
general (logical) conflicts between the norms, but that they
are only conflicts in very specific situations or even in ways
in which norms are fulfilled. An important question is how
one can handle these conflicting norms when agents confront
groups or societies with completely opposite norms.
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ABSTRACT

In many different multiagent domains that require coop-
eration, success of the agents is heavily dependent on the
communication between the agents. For better team per-
formance, shaping individual rewards is essential. As a re-
ward shaping method, difference rewards have shown previ-
ous success on many different domains, but the communi-
cation requirements are high. This paper defines the set of
environment variables on which the agent’s reward on the
system depends. The definition is used to separate the in-
formation needed for the difference reward from the rest of
the information about the environment. This concept of the
effective area of an agent is explained with an example from
the stateless gridworld domain. The experiments show that
the performance of the agents with difference reward de-
pends on the amount of information on their effective area.
Moreover, if the communication method is designed care-
fully, the agents can have same quality of difference reward
with less information that can be provided with 10% com-
munication.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Performance

Keywords

Cooperative Learning, Communication, Difference Reward

1. INTRODUCTION
Learning cooperation is a challenging but key problem in

many real world applications. To learn cooperation, reward
shaping is a highly preferable method to provide better feed-
back to each individual agent of the system [10, 6]. Differ-
ence rewards are reward shaping methods successfully used
in many different domains such as air traffic, robot naviga-
tion, data routing [18, 9] . Previous work shows that differ-
ence rewards increase the converged behavior and learning
time of the agents to a better policy than traditional lo-
cal and global rewards [2]. However, difference rewards are
highly dependent on the amount of information and com-
munication about the environment.

In order to collectively optimize system performance, agents
need to communicate with each other and share information
about the state of the system. However, as the size of the

system and the number of agents become increasingly large,
the amount of communication and information sharing re-
quired quickly becomes problematic. This is especially true
when using difference rewards, because of the fact that cal-
culations differ for every agent in the system.

In this paper, the problem stated above is addressed by
lowering the communication requirements of the difference
reward while keeping same performance. The paper defines
the critical set of system variables required for the difference
reward. This definition distinguishes the difference between
quality and quantity of the information and defines the re-
quired communication area to get same performance of the
difference reward with less communication.

The remainder of the paper is organized as follows. Sec-
tion 2 contains the required background knowledge. Sec-
tion 3 defines the problem of communication requirements
in Multiagent Systems. Next, Section 4 introduces stateless
gridworld domain that is used both to explain the concepts
and to experiment. Section 5 contains the approach used
and Section 6 shows the results of the given approach. Sec-
tion 7 ends the paper with conclusions of the research and
future research directions.

2. BACKGROUND
Multiagent Systems (MAS) have successful applications

on many real world domains such as air traffic, data routing
or robot coordination. Learning in MAS provides benefits
such as adaptation to dynamic environments or being more
robust to failures . From learning perspective, in a MAS,
multiple agents interact by sensing the environment and tak-
ing actions. As each agent’s action effect the other agents’
performances and rewards, the problem has increased com-
plexity than a single agent system. Moreover as the other
agents behaviors change over time, the environment is highly
dynamic. The agents have to learn to cooperate in addition
to learn the domain. Because of these reasons, there are
many approaches to modify usual learning methods to MAS
[12].

From the learning algorithm perspective, although it was
developed as a single agent learning algorithm, Reinforce-
ment Learning (RL) is a successful approach to MAL as
long as the rewards are set up correctly [8]. In RL, the
agents learn from their interactions with the environment
by sensing and acting [13]. The agents and the environment
are in a loop where at every timestep t the agent senses the
environment with state st, takes an action at and gets the
feedback (reward) of the previous time step rt−1. In this
loop, the agents try to learn to take actions that maximizes
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the feedback that they get.
In some multiagent problems the environment consists of

the agents but the agents do not sense the state of the en-
vironment. These problems are called stateless problems
where the agents take actions and get the reward at every
timestep. In these problems, the goal of the agents is to learn
to maximize their reward by learning to adapt to the other
agents. Congestion Domains (e.g. bar problem) are good
examples to these type of problems [17]. These problems
provide simpler testbed for learning methods. The general
learning rule that is used for the stateless learning agents
are: V (a) ← (1 − α)V (a) + αR where V (a) is the value of
taking the action a, α is the learning rate and R is the re-
ward of the agent for taking the action a. This paper uses a
Stateless Gridworld Problem presented in following sections
to both explain and validate the introduced idea.

From type of goal perspective, multiagent problems can
be divided into two categories such as Cooperative and Com-
petitive. Cooperative problems are a subfield of multiagent
learning problems where the agents try to learn to increase
global system (or team) utility by collaborating with each
other [4]. There are many different approaches to develop
cooperative algorithms such as joint learners, game theory
and hierarchical learning methods [11]. Another method for
cooperation is shaping the reward of the individual agents,
such that maximizing individual rewards will result in co-
operation of the agents [7, 5, 19]. To be able to work on
reward shaping methods, next subsections explain different
types of rewards and a the difference reward as a successful
method for cooperation problems.

2.1 Team Goals and Individual Rewards
Rewards are essential part of the reinforcement learning

problems. In cooperative problems, the agents act individu-
ally, but their goal is to cooperate and increase the team re-
ward. There are two trivial types of reward: “Global” which
represents global utility of the team and “Local” which rep-
resents individual effort of the agent itself.

Previous work shows that providing global utility to the
agents will not provide the optimal behavior for the learning
agents, because an agent can not distinguish the impact of
its action on the reward it receives [1].

Another strategy for reward structure is to provide local
reward to every individual agent. Local reward is the feed-
back to the agent depending only on its own action. How-
ever, with a local reward, there is no guarantee that the
agents actions promote good system behavior.

2.2 Factoredness and Difference Reward
As seen in previous section, the agents that use the global

reward (G) and the local reward (L) do not guarantee suc-
cess for the team. This behavior is explained with two con-
cepts: Factoredness and Learnability [3]. Degree of factored-
ness of a reward defines the proportion of the individual re-
wards that are aligned with the global reward. This allows
to measure if a different action of the agent results in a bet-
ter global reward, also results in an increase in the individual
reward that it gets. Formally it is defined as:

Fgi =

∑

z

∑

z′

u
[

(gi(z)− gi(z
′))(G(z)−G(z′))

]

∑

z

∑

z′

1
(1)

Where the states z and z′ only differ in the state of agent
i, and u[x] is the unit step function, equal to 1 if x > 0.
This definition keeps track of the cases where the change in
the individual reward gi(z) − gi(z

′) and the system reward
G(z)−G(z′) have the same sign. In addition to factoredness,
another metric used is learnability. It measures the effect of
the agent on the reward. Because it is not in the context of
this paper, we omit, but the details can be found in [1].

Considering the concepts explained above, the local re-
ward is highly learnable but less factored, and global reward
is perfectly factored but not highly learnable. To overcome
problems of these two rewards, Difference Reward (D) is a
shaped reward that is defined to be more learnable than
global reward and more factored than local reward. It is
defined as:

Di ≡ G(z)−G(z − zi + ci) , (2)

Where first term G(z) is the global reward of the state
z, second term G(z − zi + ci) is the global reward of the
system where the agent i is taken out and is replaced by an
absorbing action. Subtraction of second term from the first
term gives the effect of the agent on the system. It is shown
to perform better than G and L in many different domains
[16, 15].

Despite its success, there are some disadvantages of using
difference reward: Either the agents or the system should be
able to calculate the global reward of the agent. When it is
possible for the centralized system to calculate it, it requires
recalculation of the global reward without the agent for ev-
ery agent in the system. If it is calculated by every agent
itself, the agents have to observe all the environment and ev-
ery other agent in the domain or they have to communicate
about their actions or states.

3. PROBLEM DEFINITION
As discussed in previous sections, using the difference re-

ward results in better performances. However, each agent
requires all the information that is used to calculate global
reward and calculates the system reward for each agent. For
many different domains, this assumption is not realistic, or
requires a lot of calculation. Additionally, even if it is pos-
sible, communication is costly, and error prone. It is always
a desired behavior to decrease amount of communication.

On the other hand, previous sections explained the differ-
ence between performances of difference reward and trivial
ones such as global and local. Because of that reason, be-
ing able to use similar structure to difference reward even
in the imperfect communications is a highly desired solution
to multiagent problems. Previous work introduced two dif-
ferent ways of calculating the difference reward in imperfect
knowledge of the environment: truncation and estimation
[1].

Assuming that an agent gets partial information of the
system, difference reward can be calculated by using the
partial knowledge and ignoring the rest of the system. This
approach is called truncation. In contrast, using the partial
information to estimate the rest of the system is another
approach. If the agent can get the global reward signal in
addition to the information, this signal can be used to cal-
culate the first term of the difference reward, which resulted
in different approaches to use difference reward in low com-
munication problems [1].
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In the paper discussed above, the authors give the example
of how these different approaches behave in low communica-
tion according to global and local rewards. However, we ex-
plain the reasons behind these performances of the difference
reward approaches in low communication. Additionally, we
define the type of information that the difference reward re-
quires, and how one can design a proper way of measuring
needed information to expect performances closer to the full
communication. To make it easier to explain the concepts,
next section defines the stateless gridworld domain that al-
lows to do analysis of different types of communications and
different types of the rewards.

4. STATELESS GRIDWORLD DOMAIN
The stateless gridworld domain is a toy multiagent domain

based on the cooperation of agents within a gridworld con-
taining points of interests (POI). It is based upon the rover
domain in terms of observation and POIs, but the domain
is discrete and stateless. Unlike typical gridworld domains,
instead of choosing which direction to travel, the agents di-
rectly choose a position where they want to be, so the num-
ber of actions is number of cells in the grid. Although it
is more simplified than the usual gridworld domain, it still
contains the challenges of a cooperative domain [14]. More-
over, the problem given by the domain can be easily as-
sociated with real world domain where the agents already
have encoded ability to navigate to a chosen point. In this
problem the agents try to learn a team behavior to increase
the amount of observations made by the team at every time
step.

The domain is different from basic stateless problems in
terms of existence of the distance metric. Compared to the
a simple congestion problem, there exists a distance met-
ric that is naturally defined. Unlike a congestion domain,
the rewards do not only depend on the number of agents
that chose exact same actions, it depends on the agents that
chose close cells to the agent. The rewards are calculated
using this distance metric, moreover, the communication re-
strictions of the agents can be applied either using random
sets of agents or using this distance metric. In this domain,
we performed experiments with two types of communication
restrictions. The first type involved restricted communica-
tion rates, which limits the number of agents that any one
agent can communicate with at a given time. The second
type involved communication-distances, agents were only al-
lowed to communicate with other agents that are within the
limit distance.

As expressed above, the main goal for the agents is to
observe POIs. Observation of the POIs is defined according
to the distance, each POI is observed by the closest agent,
and observation value of that POI is determined according
to the distance between the POI and the closest agent. For
the whole system, team utility that the agents try to increase
is the sum of the observations for all of the POIs, defined
as:

G(z) =
∑

p∈POIs

max
a∈Agents

(0,β −min(distance(a, p)) (3)

where p represents POI in the system, a represents the agent
which minimizes the distance, and β represents the maxi-
mum distance that a POI can be observed from.

The system utility for the domain is the global reward cal-
culated by the sum of the observations for the POIs. Local
reward for each agent is defined as the amount of obser-
vation made by that specific agent. The difference reward
discussed above is defined as the system utility with the
agent subtracted by the system utility without the agent.
When the domain is partially observable due to limited com-
munications, the difference reward used is formed by either
truncation of estimation methods discussed in the section 3.
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(a) Even POI distribution
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(b) POIs distributed over
the edges

Figure 1: Gridworld types used in the experiments
with different POI distributions

For this paper, the number of POIs in the domain is fixed,
but to prevent a domain specific approach, the distribution
of the POIs is chosen in two different ways. First one dis-
tributes the POIs to the gridworld evenly with equal dis-
tance between them (i.e. 1 POI at every 10th square). Sec-
ond approach distributes the POIs over the edges of the
gridworld, so that the agents have to learn the distribution
over the edges (Figure 1). There are two main differences in
this distribution. First, it makes sure that the agents learn a
specific formation other than basic repulsion, second, in low
communication cases, in optimal distribution, the agents will
not be able to see most of the other agents. Both of these
properties make the second distribution problem harder to
learn for the agents. Although this paper does not include
the cases, the domain is also suitable for the heterogeneous
distributions, or POIs with different weights.

5. EFFECTIVE AREA AND DIFFERENCE

REWARD
This section contains the main contribution of the pa-

per, the definitions required to explain the quality and the
amount of information needed for an agent to calculate dif-
ference reward. First, we start by defining effective area of
an agent. Effective area of an agent in the system is the
set of variables of the environment that the agent’s utility
on the system depends according to. As an example, if we
assume that every cell of the gridworld are the variables of
the environment that are used to calculate the reward, the
utility of an agent mostly depends on the position of the
agent and its surrounding cells. For example, if we move
another agent that is at the other end of the gridworld, this
change does not affect the contribution of the agent on the
other corner.

For the same example but a different approach, if we as-
sume that variables used for reward calculation are the po-
sitions of the agents, only the variables that represent posi-
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tions close to the agent are important for the agent. Looking
from the other side of the problem, the nature of the differ-
ence reward addresses this problem by taking the difference
of the system with the agent and without the agent. In this
case, assuming that the disappearance of an agent changes
the dynamics of a specific region, by subtracting second term
from the first term, the region that are not affected by the
agent are already ignored. Combining the definition of the
effective area and the nature of the difference reward in the
stateless domains, one can conclude that difference reward
calculates the contribution of an agent to the system which
is limited to some specific environment variables represented
by the effective area of that agent at that state.

For example, if the system utility is composed of linear
combination of different areas of the system, and a change
in some part of the environment only affects certain elements
of the sum, the formula Gz−Gz−i eliminates the elements in
the sum that are not affected by the change. The resulting
set of the subtraction represents only the affected elements
of the sum, and effective area can be defined as the variables
of the system that can can affect these elements (not only the
elements, all the variables that can affect these elements).

If we formulate the difference reward for the given grid-
world domain, G(z) was defined as a sum of observations
of POIs. Assuming that function for measuring the obser-
vation for a POI p by an agent a is represented by f(p, a),
combining f , Equation 2 and Equation 3 gives:

Di =
∑

p∈POIs

max
a∈Agents

f(p, a)−
∑

p∈POIs

max
a∈Agents−i

f(p, a) (4)

The terms of first element and the second element only differ
at the places where agent i is the closest agent to the POI p
(Case A). So it is 0 in all the other cases.

Di =
∑

p∈POIs

{

max
a∈Agents

f(p, a)− max
a∈Agents−i

f(p, a) Case A

0 else

(5)
For most of the POIs, agent i is out of the range, which
gives the ability to cancel elements from both of the terms.
Canceling every POI that agent i cannot affect, reduces the
Equation 4 to:

Di =
∑

p∈range(i)

max
a∈Agents

f(p, a)− max
a∈Agents−i

f(p, a) (6)

This reduced definition of the difference reward does not
require any information about the far POIs and also the
agents that are not in the range of the this small set of
POIs. As a description, the resulting information needed is
composed of the agents that are in range of the POIs for
which the agent i is in the range too. An example to this
description is given in Figure 2.

Considering the stateless gridworld domain, each POI can
be observed from a distance of 10, and given the description
above, in extreme cases, the effective range can increase up
to 20, but most of the cells have a range less than 20. Ac-
cording to the calculations, if an agent has full information
about its surrounding within range 20, it can calculate its
difference reward without any errors. Moreover, this range
does not depend on the size of the gridworld, the same range
can be used even for bigger environments.

Figure 2: Approximate Effective Area of an agent
in gridworld domain. Red dots are the POIs, and
the changes in the gridworld outside the radius does
not affect the difference reward of the agent

6. EXPERIMENTS AND RESULTS
The set of experiments that are conducted in this section

are ordered as performances of the agents in a specific setup
followed by the degree of factoredness and the analysis of
the rewards and in this given setup. As described, there
are two types of gridworld and two types of communication
(Table 1). All of the experiments contain 20 agents working
on a 100 × 100 gridworld domain. The agents use stateless
action value learning with learning rate of 0.7 and ε-greedy
exploration with ε = 0.9.

POI-edge POI-even
Random Figures 3, 4 Figures 5, 6
Distance Figures 7, 8 Figures 9, 10

Table 1: Table of the experiments according to the
communication type and gridworld type

First experiment is testing the performances of the agents
in different levels of communication from 0% to 100%. The
communication level allows each agent to only learn (or per-
ceive) the actions (or the positions) of a set of randomly
chosen agents. DT and GT are truncations of Difference
and Global reward according to the communication level.
In the 100% communication case, the agents can see all the
agents in the gridworld, which leads the truncations become
the actual difference or global reward. In lower communica-
tions, global and difference rewards are calculated only with
the partial information that the agents get.

Figure 3 clearly shows that increase in the communication
leads to an increase in the performance of the agents. Al-
though this is an expected result, we investigate the reasons
by looking at the Figure 4 which shows the factoredness of
the reward structure in the defined domain. As the perfor-
mance graph, we can see an increase at the factoredness with
increasing communication level. Both performance and fac-
toredness graphs can be explained with the fact that lower
communication levels make the domain less observable and
forces the agents to use less information or do an approxi-
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Figure 3: Performances of GT and DT in random
communication for POI distribution over the edges.
Communicating with random agents increase the
performances of the DT, more communication gives
better performance.
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Figure 4: Factoredness of GT and DT in random
communication for POI distribution over the edges.
As well as performances, communicating with ran-
dom agents increase the factoredness of DT linearly,
more communication gives better factoredness. This
is related to more information about effective area

mation of the complete difference reward.
To make sure that the results hold for non homogeneous

distribution, next experiments show the performances of the
agents in a gridworld where the POIs are distributed evenly.
Figure 5 shows a linear increase in the agents performances.
The increase is smaller, because as the POIs are distributed
everywhere, the problem is easier for the agents even when
they behave randomly. So, the performances in 0 commu-
nication is higher than the first experiment, but the same
linear increase can be seen. Looking at the factoredness
results (Figure 6), difference reward has the factoredness
proportional to the level of communication. On the other
hand, global reward has a monotonically increasing factored-
ness line, but the shape of the line is different. As this paper
is not interested in truncation of global reward, explanation
to this factoredness levels are left as a possible future work.
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Figure 5: Performances of GT and DT in random
communication for evenly distributed POIs. As the
problem is easier, performance at 0 is better, but DT
have the same increase with more communication.
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Figure 6: Factoredness of GT and DT in random
communication for evenly distributed POIs. In-
crease in factoredness of DT is exactly linear with
respect to communication, because of getting more
information about effective area gives more factored
problem.

In the 4 results explained so far, the approximately linear
increase of the difference reward in both performances and
factoredness can be easily explained by effective area of the
agent. Communicating with more random agents will in-
crease the chances of getting more information on the effec-
tive area. So, linear increase in communication gives linear
increase in factoredness and the performances of the agents.

The first four results might be expected, because they
conclude with more communication results in better per-
formance. They are also similar to the congestion domain
where the communication is defined as acquiring more in-
formation about the environment by communication more
randomly selected agents. On the other hand, when the
agents switch to the limited communication according to
the distance with other agents, the critical results can be
seen in Figure 7. The agents show amazing performances
at the lower communication levels. One can see that even
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Figure 7: Performances with communication accord-
ing to distance. Only 10% of communication is
enough for DT to perform as well as 100%
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Figure 8: Factoredness with communication accord-
ing to distance. DT becomes fully factored at 10%
communication, because it has most of the informa-
tion about its effective area.

10% communication is enough for an agent, to be able to
perform close to full communication. Considering the defi-
nition of the difference reward where the main disadvantage
was stated as full communication requirement, this result
lowers this requirement to 10% and makes the difference re-
ward a perfect candidate even for the lower communication
cases.

To be able to explain the difference between two types of
communications, next experiment 8 shows the factoredness
graph for the same experiment. 10% communication level
shows the reason of the performance explained before. The
truncated difference reward that the agents calculate are
close to totally factored.

The result set for different POI distributions (Figures 9
, 10) holds the same results giving a critical success within
10% communication. Although having mostly factored re-
ward in a domain where an agent can only see 10% of the
world seems unrealistic, it can be easily explained with the
effective area of the stateless gridworld domain. Using the
description of the effective area, 10% is close enough for an
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Figure 9: Performances with communication accord-
ing to distance with evenly distributed POIs. Only
10% of communication is enough for DT to perform
as well as 100%
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Figure 10: Factoredness with communication ac-
cording to distance with evenly distributed POIs.
DT becomes fully factored at 10% communication

agent to get exact information about its effective area. The
information that the agent gets about the rest of the envi-
ronment is useless for the agent that can use the difference
reward to perform at the top level with smaller amount of
information.

When the same experiment is repeated for bigger domains
(Figure 11) shows that the results hold for different sizes
of the domains and different number of agents. When we
increase number of agents and POIs, the effective area of the
agent does not depend on the number of agents or size of
the domain, it only depends on the limit distance to observe
a POI. As there are more agents and more POIs the agents
observe more in bigger domains. Moreover as the system
gets bigger, the area that 10% communication represents
gets bigger, as the size of the effective area is constant, this
indicates that the required communication level decreases to
below 10%.
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Figure 11: The performances with respect to in-
creasing number of agents. Results hold for bigger
systems, as the agents can observe more POIs, per-
formances increase.

7. CONCLUSIONS AND FUTUREWORK
As discussed before, learning coordination is a challenging

task. Although the difference reward had a big improvement
over the global team reward, problems were arising with less
observable, or low communication domains. This paper an-
alyzed the performances of the truncation of the difference
reward in a low communication domains, and introduced ef-
fective area of an agent to explain the amount and the type
of information that the difference reward needs. ‘ As seen in
the results, the quality of the information can be measured
by information about the effective area, and the informa-
tion that the agent needs depends on that area instead of
all of the environment. As a consequence, we were able to
decrease the information needs of the difference reward to
10% in an average size the stateless gridworld domain, and
the results show that they can perform as good as to the full
communication level.

In conclusion, the paper shows that if one can define
the effective area of an agent for a specific domain, the
agents can benefit the advantages of using the difference
reward without suffering the communication requirements.
Not only the agents can perform better than global reward,
they can also reach full performance of the difference reward
with less communication, ignoring the information that the
difference reward excludes by its definition.

Future work would extend this into two areas, one future
research direction is the automated discovery of the effective
states of an agent. Although this can be done by human
expertise for some specific domains, automated discovery
of the effective range and applications on different types of
domains can provide the people basis for same good perfor-
mance with less communication that does not depend on the
size of the environment. Another research opportunity can
be approximating the importances of the states in the effec-
tive area, and being able to ignore the less important states
and having approximately same performance while getting
partial information about the effective area of an agent.
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ABSTRACT
We present a distributed Q-Learning approach for indepen-
dently learning agents in a subclass of cooperative stochas-
tic games called cooperative sequential stage games. In this
subclass, several stage games are played one after the other.
We also propose a transformation function for that class and
prove that transformed and original games have the same
set of optimal joint strategies. Under the condition that
the played game is obtained through transformation, it will
be proven that our approach converges to an optimal joint
strategy for the last stage game of the transformed game
and thus also for the original game. In addition, the ability
to converge to ε-optimal joint strategies for each of the stage
games is shown. The environment in our approach does not
need to present a state signal to the agents. Instead, by
the use of the aforementioned transformation function, the
agents gain knowledge about state changes from an engi-
neered reward. This allows agents to omit storing strategies
for each single state, but to use only one strategy that is
adapted to the currently played stage game. Thus, the algo-
rithm has very low space requirements and its complexity is
comparable to single agent Q-Learning. Besides theoretical
analyses, we also underline the convergence properties with
some experiments.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms

Keywords
Multiagent Reinforcement Learning, Cooperative Stochas-
tic Games, Distributed Stateless Learning, Sequential Stage
Games.

1. INTRODUCTION
In reinforcement learning (RL), a single agent learns a

policy that should maximize the sum of rewards obtained
in an environment that is modeled as a Markov Decision
Process (MDP). Reinforcement learning in such single agent
settings is a thoroughly studied area with several theoretical
results [5] [14]. Against this background, the technique also

becomes interesting for multiagent settings. However, sev-
eral challenges, like adaption to changing behaviors of other
learning agents, coordination, or scalability have to be ad-
dressed in multiagent reinforcement learning (MARL). Most
of these problems are not yet solved for general settings [2]
[13].

Many MARL algorithms search for optimal Nash equilib-
ria in stochastic games, which are a generalization of MDPs.
These algorithms require to store values for each particular
state-action pair of a game. Also, a strategy for each state
of the game is stored. Clearly, this becomes problematic in
complex and large systems and is known as curse of dimen-
sionality [2]. In general, MARL algorithms can be classified
along several dimensions. Agents, for instance, can be clas-
sified into joint-action learners, independent learners or into
a class in between [2]. Joint action learners have strong as-
sumptions which often do not hold for practical distributed
applications that involve large numbers of agents. For in-
stance, they require agents to be able to perceive all actions
of the other agents in order to calculate a best response be-
havior. Another, common assumption includes the ability
of the agents to correctly perceive the entire (global) sys-
tem state. Independent learners are agents that learn solely
based on the reward obtained after executing an action and
disregarding the actions of the other agents. The third class
contains agents which are neither joint action nor indepen-
dent learners, e.g. agents taking into account some but not
all other agents. Advantageous for the latter two classes are
their decreased complexity and their ability to learn solely
based on local information. They, however, also suffer from
many problems like credit-assignment, coordination towards
the same (optimal) Nash equilibria, or the curse of dimen-
sionality, as they also have to store information for each
state-action pair. For more details and general challenges in
MARL consult e.g. [2] or [13].

We term the subclass of cooperative stochastic games con-
sidered in this work (cooperative) sequential stage games
(SSG). This class contains those games that are composed of
static games which are played repeatedly and consecutively
by the same agents. Sequential stage games offer some in-
teresting properties for application, in particular for large
problems where agents are unable to observe all other agents
and cannot access the global state of the system due to its
size. Possible applications of this class include for instance
economic problems, distributed control of production pro-
cesses, distributed web-services, coordination in large dis-
tributed robotic systems, or multi-objective optimization
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problems. One example of the latter two types is presented
in [7]. There, a set of mobile agents has to be partitioned re-
peatedly onto a set of special target objects in a distributed
manner using only local information. The solution quality
depends on the target selection of each agent and is linked
to the actual positions of targets and agents. Hence, when-
ever any agent or target is moved, a new cooperative game
arises that is played by the same agents – clearly this is a
sequential stage game.

The contribution of this paper is an independent learners
approach for this game class that provably converges to an
optimal joint strategy for the last played static game that is
part of a sequential stage game. In addition, the approach
provably is able to converge to ε-optimal joint strategies for
each static game of the sequential stage game. Figure 1 il-
lustrates the relationship between the proposed game class
and stochastic games. It also summarizes the approach that
uses a transformation function which transforms any SSG
into another game of that class such that the optimal joint
strategy set is equal for both games. The algorithm plays
the transformed game. In particular, our approach allows
the agents to learn solely based on local information. There
is also no need for a direct state signal from the environment,
as state changes are propagated by engineered rewards ob-
tained from the transformation function. Since no explicit
state signal is available, our agents only store values for each
of their own actions. Accordingly, the aforementioned curse
of dimensionality is to some degree circumvented as no po-
tentially large tables for each state-action pair have to be
stored.
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Figure 1: Overview on the proposed approach.

The remainder of this work is organized as follows. In
Section 2, we briefly present some related work. Then, in
Section 3 we recall some common terms and games used in
RL and finally define sequential stage games which are a
proper subclass of stochastic games. Section 4 first presents
the transformation function and proves its properties. Next,
we introduce the distributed stateless learning algorithm and
prove two theorems on its convergence as stated above. The
last part of that section then briefly addresses complexity
results of the approach. In Section 5, we underline the the-
oretic convergence results with some experiments. Finally,
Section 6 closes the paper with a discussion and an outlook
on future work.

2. RELATED WORK
Reinforcement learning problems for single agent systems

are mostly framed as Markov Decision Processes (cf. Section
3). Basically, a reinforcement learning agent senses the cur-
rent state st ∈ S of its environment and selects and executes
an action at ∈ A. It then perceives the resulting state of
the environment and a scalar reward R(st, at), that reflects
the influence of the action on the environment. Actions are

selected according to a policy π : S → A. The goal of the
agent is to learn a policy that maximizes the discounted sum
of rewards, i.e. that maximizes

∑∞
t=0 β

tR(st,π(st)), where
st+1 = δ(st, at) and β ∈ [0, 1) is the discount factor.

Several algorithms for single agent reinforcement learning
have been proposed [14] among which Q-Learning [17] is one
of the most popular and probably also most influential one.
Q-learning is an off-policy approach that iteratively updates
so-called Q-values for each state-action pair. Equations 1
and 2 show the update rules for deterministic MDPs:

Q0(s, a) = 0, ∀s ∈ S, a ∈ A (1)

Qt+1(s, a) =

{
Qt(s, a), if s $= st or a $= at

R(s, a) + βmax
â∈A

Qt(δ(s, a), â),otherwise
(2)

Watkins and Dyan [18] proved that Q-Learning converges to
optimal Q-values under certain conditions. In deterministic
settings, these include bounded rewards and that each state-
action pair is visited infinitely often (cf. [12]).

A common framework for MARL are stochastic games
(SG), which we will introduce in detail in Section 3. Many
MARL algorithms search for optimal Nash equilibria in SGs
or stage games that arise in certain states of a SG [2]. They
learn policies as an aggregation of strategies for each state of
the game. Therefore, they need to store information about
the expected outcome when in any state any (joint) action
is played. Although techniques like function approximation
exist [11], the algorithms most often use so called Q-tables
to store information for each state-action pair. For complex
systems, these tables grow exponentially in the number of
states, actions, and agents [2].

Many algorithms for cooperative multiagent reinforcement
learning are based on Q-Learning, e.g. [3], [6], [8], [10]. In
[6], Kapetanakis and Kudenko present the Frequency Max-
imum Q Value (FMQ) heuristic that steers action selection
towards actions which frequently returned good rewards. In
particular, that heuristic uses the Boltzmann action selec-
tion mechanism (Equation 3), which calculates the probabil-
ity of selecting an action based on an estimate of the actions’
usefulness.

Pr(a) =
e

EV (a)
τ

∑
â∈Ai

e
EV (â)

τ

(3)

EV (a) = Q(a) + c
Ci

max(a)
Ci(a)

Rmax(a) (4)

In Equation 3, Ai denotes the set of actions available to any
agent i, τ is an exponentially decreasing temperature value
and EV (a) denotes the estimated value of an action. Equa-
tion 4 (cf. [2]) shows the details of FMQ based on the current
Q-value of an action. Here, c is a constant which weights
the influence of the frequency heuristic and Rmax(a) denotes
the maximum reward observed after executing action a. Fi-
nally, Ci

max(a) counts how often Rmax(a) has occurred and
Ci(a) counts how often action a was performed in general.
Given appropriate parameters, Kapetanakis and Kudenko
[6] showed experimentally that FMQ converges almost al-
ways to optimal strategies in the considered games. How-
ever, they also point out problems in games with stochastic
rewards. In [10], an extended FMQ with improved conver-
gence in such stochastic games is presented.

The approach presented later in this work uses Lauer’s
and Riedmiller’s Distributed Q-Learning algorithm (DQL)
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[8]. In their work, the authors also prove the convergence of
DQL to optimal joint policies for fully cooperative stochastic
games under some assumptions. These include non-negative
rewards and deterministic problems. We will use the con-
vergence property of DQL later in this work when we prove
the convergence of our approach in sequential stage games.
DQL is an algorithm for independently learning agents that
is based on an optimistic assumption, i.e. each agent as-
sumes that the others play optimally. The central idea of
DQL thus is to update local q-values1 only if a larger value is
obtained. This update rule for each agent i is shown in Equa-
tions 5 and 6, where ai

t ∈ Ai is the action of agent i at time
t, β denotes the discount factor, ut = (a0

t , . . . , a
i
t, . . . a

n−1
t )

is the joint action of all n agents at time t, and R(st, ut) is
the common return.

qi0(s, a) = 0, ∀s ∈ S, a ∈ Ai (5)

qit+1(s, a) =






qit(s, a) , if s $= st or a $= ai
t

max{qit(s, a), R(st, ut)+

βmax
â∈A

qit(δ(st, ut), â)}, otherwise
(6)

In [8] it is shown that this alone is not enough to deal with
the coordination problem that arises in cooperative games,
i.e. if not all greedy (local) strategies result in optimal joint
strategies. Hence, DQL is completed by the following policy
construction rule given in Equation 7 for each agent i, having
πi
0(s) initialized with a random agent action.

πi
t+1(s) =






πi
t(s) , if s $= st or

max
â∈Ai

qit(s, a) = max
â∈Ai

qit+1(s, a)

ai
t , otherwise

(7)

In contrast to DQL, Team-Q [9] assumes a unique optimal
joint action and thus avoids the coordination problem.

Wang and Sandholm [16] present an algorithm called on-
line adaptive learning (OAL) which provably converges to an
optimal Nash equilibrium (NE) for any cooperative SG. The
idea is to create and solve virtual games (VG) for each stage
game in order to eliminate suboptimal Nash equilibria. The
virtual games contain a one for each optimal NE and zero
otherwise. By solving VGs, agents agree on an optimal Nash
equilibrium for each virtual game, which by construction is
also an optimal NE for the corresponding stage game.

The considered class of sequential stage games does not
contain an explicit state signal to distinguish between con-
sequently played stage games. In a sense, this is related to
other models than SGs which are designed based on the par-
tial observability paradigm. For single-agent settings, par-
tially observable MDPs (POMDP) can be used if an agent
can only sense parts of its environment [4]. POMDPs extend
MDPs by a set of observations Ω and an observation function
O that returns the probability of observing ω ∈ Ω if in envi-
ronment state s ∈ S an action a ∈ A is executed. POMDPs
have also been extended to Dec-POMDPs for decentralized
applications. It has been shown that Dec-POMDP problems
are NEXP-complete [1].

Finally, we want to relate our approach to transfer learn-
ing (TL) [15]. In TL, the basic idea is to use learned behavior

1Note that throughout this work, the small letter q indicates
local q-tables calculated by each agent, and capital letter Q
represents an ordinary central Q-table.

of one task to assist learning in another, related task. In se-
quential stage games, consecutively played stage games can
be considered as different tasks with different goals. Hence,
for related stage games ideas from the area of TL might be
taken into account in future work. The approach proposed
in this work, however, does not use transfer learning meth-
ods as it basically restarts learning for each (unrelated) stage
game.

3. GAMES
Based on [2], we first recall some common terms and mod-

els used in the context of reinforcement learning. Then, we
will introduce and define the class of games considered in this
paper and show that it is a subclass of stochastic games.

As mentioned in the previous section, reinforcement learn-
ing problems in single agent settings are mostly modeled as
Markov Decision Processes. These are defined as follows [4]:

Definition 1. (Markov Decision Process) A Markov Deci-
sion Process (MDP) is defined as a tuple 〈S, A, δ, R〉, where
S is a finite set of world states and A is a finite set of possi-
ble actions. The state-transition function δ : S ×A → Π(S)
gives a probability distribution to be in state s′ ∈ S after
action a ∈ A in state s ∈ S was executed. The reward
function R : S × A → R returns an immediate reward for
executing action a ∈ A in state s ∈ S.

In deterministic settings, the transition function reduces to
δ : S × A → S. Since MDPs are not sufficient for mul-
tiagent settings, many MARL approaches work on a well
known generalization of the MDP, namely stochastic games
or Markov games, which can be defined as follows:

Definition 2. (Stochastic game) A stochastic game (SG)
is defined by a tuple Γ = 〈s0,S,A,U , f, {ρi}i∈A〉, where
s0 ∈ S is a starting state from the set of states S. A is
a set of agents playing the game and U = ×i∈AAi is the
set of joint actions, where Ai denotes the actions available
to agent i ∈ A. The state-transition probability function
f : S×U×S → [0, 1] returns the probability of transitioning
to state s′ ∈ S after joint action u ∈ U in state s ∈ S was
executed. The set of all reward functions is given as {ρi}i∈A
having ρi : S ×U → R for all agents i ∈ A.

A policy πi of agent i is defined by πi : S × Ai → [0, 1].
It returns the probability of executing an action in a certain
state. Let Π = ×i∈Aπi denote the joint policy set. Stochas-
tic games can be divided into three categories: cooperative,
competitive, and mixed games [2]. In a cooperative stochas-
tic game, the reward functions ρi for all agents i ∈ A are
equal, i.e. the agents follow the same goal of maximizing a
common return.

Next, we define ordinary static (stateless) games:

Definition 3. (Static (stateless) game) A static (stateless)
game is defined by a tuple Γ = 〈A,U , {ρi}i∈A〉, where A is
a set of agents playing the game. The set of joint actions is
given as U = ×i∈AAi, where Ai denotes the actions avail-
able to agent i ∈ A. The set of all reward functions is
denoted as {ρi}i∈A having ρi : U → R for all agents i ∈ A.

In a static game we will use the term strategy instead of
policy to reflect the loss of the state signal. A strategy for
an agent i hence is given by σi : Ai → [0, 1]. LetΣ = ×i∈Aσi
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be the joint strategy set. Again, a cooperative static game is
a game where the reward functions are equal for all agents.

Now, we introduce a new special class of static games
which share the same agents with the same actions and thus
also the same joint action set:

Definition 4. (Common static games) Let CSG(A,U) de-
note the set of static games that have the same agents A
and the same joint action set U . We refer to this class as
common static games.

If a static game is played repeatedly by the same agents
then the game is called a repeated game. The term stage
game refers to the (static) game that is played in a fixed
state s ∈ S of a stochastic game. Since states of stochastic
games usually are visited repeatedly, a stage game is also a
repeated game. As shown in Section 2, most known MARL
algorithms for stochastic games learn in a stage-wise man-
ner, i.e. they learn a policy by learning strategies for each
stage game that arises in the different states of a stochastic
game.

The focus of this work is a new interesting subclass of
stochastic games that we named sequential stage games. Es-
sentially and simplified, such a game is composed of a set of
stage games that are played one after the other by the same
agents. Potential applications of such games have been ad-
dressed in Section 1. Formally, we define these games as
follows:

Definition 5. (Sequential stage games) A sequential stage
game (SSG) is a game defined by Γ = 〈A,U ,G, 〈G0, n0〉, g〉,
where

• A is the set of agents playing the games

• U = ×i∈AAi is the set of joint actions, where Ai de-
notes the actions available to agent i ∈ A

• G = {〈G0, n0〉, 〈G1, n1〉, . . . , 〈Gm, nm〉} is a set of m+1
pairs 〈Gj , nj〉, andGj = 〈A,U ,

{
ρji
}
i∈A〉 ∈ CSG(A,U)

is a common static game that is played repeatedly for
nj ≥ 1 times

• 〈G0, n0〉 ∈ G is the initial common static game that is
played n0 ≥ 1 times

• the game transition function g : G → G transitions
from game Gj to game Gj+1 after Gj was played nj

times

According to this definition, the games contained in set G
all share the same agent set A with the same action sets Ai

for all agents i ∈ A and thus also the same joint action set
U . Since each static game is played once for nj repetitions,
we refer to these games as stage games, too.

As mentioned above stage games can easily be identified
within states of a stochastic game, which leads to Propo-
sition 1 that relates sequential stage games to stochastic
games:

Proposition 1. Sequential stage games are a proper sub-
class of stochastic games, i.e. SSG ⊂ SG.

In order to prove this proposition first consider the follow-
ing construction. It allows us to reformulate any sequential
stage game as stochastic game. Let Γ = 〈A,U ,G, 〈G0, n0〉, g〉
be an arbitrary sequential stage game. Then a correspond-
ing stochastic game Γ′ = 〈s0,S,A′,U ′, f, {ρ′i}i∈A′〉 can be
constructed as follows:

• A′ = A and U ′ = U .

• Recall the definition of the set of games G. Then let
S =

{
s∅, s

1
0, . . . , s

n0
0 , s11, . . . , s

n1
1 , . . . , s1m, . . . , snm

m , s∞
}

be a set of 2 +
∑m

j=0 nj states. Here, svj denotes the
state that is obtained when game Gj was played for
the v-th iteration.

• the initial state s0 corresponds to state s∅, which is
the state before the first game is played

• the state transition function f for any joint action
u ∈ U is constructed such that it stays in stage game
Gj until it is played nj times and then transitions to
the next game Gj+1. Therefore, the transition func-
tion has to ensure to iterate over all states in the im-
posed ordering, which is indicated in the definition of
S above. The transition in f to the next game Gj+1

thus realizes the game transition function g of the se-
quential stage game.

Formally:

– Start:
f(s∅, u, s

1
0) = 1 ∧ f(s∅, u, s) = 0, s $= s10, ∀u ∈

U , s∅, s
1
0, s ∈ S

– Play Gj for nj times:
f(svj , u, s

v+1
j ) = 1∧ f(svj , u, s) = 0, s $= sv+1

j , ∀u ∈
U , s, sv+1

j ∈ S, svj ∈ S \ {snj
j }

– Transition from Gj to Gj+1:
f(s

nj
j , u, s1j+1) = 1∧f(snj

j , u, s) = 0, s $= s1j+1, ∀u ∈
U , s

nj
j , s, s1j+1 ∈ S

– Enter absorbing state s∞ if all games are played:
f(snm

m , u, s∞) = 1∧f(snm
m , u, s) = 0, s $= s∞, ∀u ∈

U , snm
m , s, s∞ ∈ S

– Stay in absorbing state s∞:
f(s∞, u, s∞) = 1 ∧ f(s∞, u, s) = 0, s $= s∞, ∀u ∈
U , s, s∞ ∈ S

• the reward function ρ′i of an agent i is given by ρ′i :
S × U → R, where the rewards for all joint-actions
u ∈ U in state swv ∈ S correspond to the reward
obtained when playing u in stage game Gv. In ad-
dition let ρ′i(s∅, u) = ρ0i (u), ∀u ∈ U and ρ′i(s∞, u) =
ρmi (u), ∀u ∈ U , where ρji (u) is the reward function of
agent i in stage game Gj .

By this construction we have shown that each sequential
stage game can be transformed into a stochastic game. To
prove that sequential stage games are a proper subclass of
stochastic games consider two distinct stochastic games ΓA

and ΓB with disjoint state sets. Then let ΓC be a SG that
combines both games ΓA and ΓB such that no connection
from ΓA to ΓB exists in ΓC . Now choose the initial state s0
of ΓC from say ΓA’s states. Accordingly, not all stage games
in ΓC can be played. Since by definition of SSGs, each stage
game must be played at least once, not all stochastic games
can be translated into a sequential stage game. Together
with the construction above, Proposition 1 follows.

In the context of this work, we will focus on cooperative
sequential stage games, i.e. sequential stage games where
each stage game is a cooperative one.
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4. DISTRIBUTED LEARNING WITHOUT
STATE SIGNAL

Let CCSG(A,U) be the set of all cooperative common
static games, i.e. all cooperative static games with a com-
mon agent set A which also share the same joint action set
U . For better readability, we will write CCSG if we refer to
CCSG(A,U). Then we can briefly summarize the main con-
tributions of this section as follows. In Section 4.1, given two
games GA, GB ∈ CCSG, we will present a transformation
function t(GA, GB) = GC that transforms GA into a game
GC which can be solved by the same optimal strategies as
game GB and vice versa. Based on t we then define a trans-
formation T applicable to sequential stage games. Then, in
Section 4.2, we provide an algorithm for cooperative sequen-
tial stage games that is based on the well known Distributed
Q-Learning algorithm of Lauer and Riedmiller [8] and which
learns without a direct state signal. Finally, in Section 4.3,
we prove that our algorithm is able to converge to an opti-
mal joint strategy for the last stage game under the same as-
sumptions as Q-Learning and given that all successive stage
games are obtained through the transformation function t.
In addition, we prove that our algorithm can converge to
ε-optimal joint strategies for all stage games contained in a
(transformed) sequential stage game. In the end, Section
4.4 then briefly discusses the runtime and space complexity
of the proposed approach.

4.1 Transformation
First, we define the aforementioned transformation func-

tion for two cooperative common static games.

Definition 6. (Transformation function t) Given two ar-
bitrary games GA = 〈A,U , ρGA〉 and GB = 〈A,U , ρGB 〉
from CCSG. Then the transformation function t : CCSG ×
CCSG → CCSG is defined by

t(GA, GB) = 〈A,U , ρGC 〉

with reward function ρGC as presented in Equation 8.

ρGC (u) = max
û∈U

|ρGA(û)|+max
û∈U

|ρGB (û)|+ ρGB (u) (8)

To prove that GC obtained from t(GA, GB) is optimal
joint strategy equivalent, we first need to show Lemma 1.

Lemma 1. An optimal joint strategy σ! for a game Γ re-
mains optimal if a constant value is added to all rewards.

Proof. By definition, an optimal joint strategy maxi-
mizes the summed discounted rewards, i.e. for any optimal
joint strategy σ! ∈ Σ! it holds that2

∞∑

n=0

βnρ(σ!) ≥
∞∑

n=0

βnρ(σ), ∀σ ∈ Σ,

where β is the discount factor and ρ the reward function.
Let us assume, that an optimal joint strategy σ! be-

comes suboptimal if a constant value is added to all rewards.
Then there must be another strategy σ′ that maximizes the

2Although σ,σ! are tuples composed of one strategy for
each agent, we write ρ(σ) resp. ρ(σ!) to denote the reward
that is obtained if each agent choses its action according to
the strategy defined through the tuple.

summed discounted rewards:
∞∑

n=0

βn(ρ(σ!) + c) <
∞∑

n=0

βn(ρ(σ′) + c) (9)

∞∑

n=0

βnρ(σ!) +
∞∑

n=0

βnc <
∞∑

n=0

βnρ(σ′) +
∞∑

n=0

βnc(10)

∞∑

n=0

βnρ(σ!) <
∞∑

n=0

βnρ(σ′) (11)

The lemma follows since the last Equation 11 is a contradic-
tion to the assumption that σ! was an optimal joint strategy
before the constant was added.

Using this lemma, we now can prove a first property of
the transformation function:

Lemma 2. Let game GC = t(GA, GB) ∈ CCSG be the re-
sult of the transformation function t as defined in Definition
6 for two games GA, GB ∈ CCSG. Then any optimal joint
strategy for game GB is also an optimal joint strategy for
GC and vice versa.

Proof. Let c = maxû∈U |ρGA(û)| + maxû∈U |ρGB (û)|.
Then, Equation 8 of transformation function t can be rewrit-
ten as ρGC (u) = c+ρGB (u), where c is constant for any two
fixed games GA and GB . Thus, the reward function ρGC for
game GC is obtained by adding a constant to the rewards
of game GB . Accordingly and from Lemma 1 it follows that
any optimal joint strategy σ!(GB) ∈ Σ!(GB) for game GB

from the set of optimal joint strategies is also an optimal
joint strategy for game GC . By the same arguments, also
the other direction follows, as ρGB (u) = ρGC (u)− c.

In order to prove the convergence of our algorithm provided
later in this work, we show another property of the trans-
formation function.

Lemma 3. Let game GC = t(GA, GB) ∈ CCSG be the
result of the transformation function t as defined in Defini-
tion 6 for two games GA, GB ∈ CCSG. Then all rewards in
game GC are greater or equal to those in game GA, formally
ρGC (u) ≥ ρGA(u), ∀u ∈ U .

Proof. Recall Equation 8 of transformation t:

ρGC (u) = max
û∈U

|ρGA(û)|+max
û∈U

|ρGB (û)|+ ρGB (u)

Let us assume there is one u ∈ U for which ρGC (u) <
ρGA(u) holds, then:

max
û∈U

|ρGA(û)|+max
û∈U

|ρGB (û)|+ ρGB (u) < ρGA(u)

This can be transformed to

max
û∈U

|ρGB (û)|+ ρGB (u)
︸ ︷︷ ︸

≥0

< ρGA(u)−max
û∈U

|ρGA(û)|
︸ ︷︷ ︸

≤0

(12)

which clearly is a contradiction, since the left side even for
negative rewards evaluates to ≥ 0 and the right side to ≤ 0
since maxû∈U |ρGA(û)| is the largest absolute reward value
in game GA. Hence, the lemma follows.

In the end, Definition 7 defines a transformation function
T that can be applied to sequential stage games. It basi-
cally converts all successive static games contained in the
sequential stage game using the base transformation t.
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Definition 7. (Transformation Function T) Let game Γ =
〈A,U ,G, 〈G0, n0〉, g〉 ∈ SSG, and letG(G) = {Gj | 〈Gj , nj〉 ∈
G} denote the set of common static games contained in
the tuples 〈Gj , nj〉 of G. Then, the transformation func-
tion T : SSG → SSG applied to Γ calculates a new game
Γ′ = 〈A,U ,G′, 〈G0, n0〉, g〉, having

G′ = {〈G0, n0〉, 〈G′
1, n1〉, 〈G′

2, n2〉, . . . , 〈G′
m, nm〉}

with G′
1 = t(G0, G1), G0, G1 ∈ G(G) and G′

j = t(G′
j−1, Gj),

Gj ∈ G(G), j ≥ 2.

4.2 Algorithm
Algorithm 1 shows our Distributed Stateless Learning

(DSL) algorithm, which basically is a variant of the Dis-
tributed Q-Learning algorithm (DQL) as proposed by Lauer
and Riedmiller [8] without a state signal. In line 10, β ∈
[0, 1) denotes the discount factor.

Algorithm 1 Executed by each agent i ∈ A
1: procedure DistributedStatelessLearning
2: iteration ← 0
3: ∀a ∈ Ai : qi(a) ← 0 ) initialize local q-function
4: σi ← choose arbitrary action
5: while (iteration < maximum iterations) do
6: Select action a ∈ Ai (e.g. ε-greedy selection)
7: Execute action a ) which leads to joint action u
8: Observe reward R(u) ) reward of joint action u
9: maxq

i ← maxa∈Ai{qi(a)}
10: qi(a) ← max{qi(a), R(u) + β ·maxqi }
11: if qi(a) > maxqi then
12: σi ← choose a ) update strategy

13: iteration ← iteration + 1

As we will prove in Section 4.3, DSL solves any coopera-
tive sequential stage game obtained from transformation T.
While playing a cooperative SSG, agents using this learning
algorithm indirectly get to know about the transition to a
new stage game through engineered rewards calculated by
T. Accordingly, the environment does not need to provide a
state and a reward signal, but only the engineered reward to
the agents. Note that this means that we are able to solve
a subclass of stochastic games without storing a full q-table
with values for each state-action pair of the game.

4.3 Convergence
In this section, we prove the convergence of our approach,

i.e. transformation function T combined with Algorithm 1,
in deterministic settings. Therefore, we make the common
assumption that the rewards are bounded and that the num-
ber of actions are finite.

Lauer and Riedmiller [8] prove that DQL converges to op-
timal joint policies for any cooperative multiagent Markov
Decision Process (MAMDP) given that each state-action
pair is visited infinitely often. Since cooperative stage games
are a special variant of cooperative MAMDPs with an empty
state set, this result obviously also holds for cooperative
stage games. Hence, it is easy to see that this also holds for
the class of cooperative common stage games, i.e. repeatedly
played cooperative common static games (cf. Definition 4).
This gives us Corollary 1:

Corollary 1. Distributed Q-Learning converges to opti-
mal joint policies for cooperative common stage games given
that each action is performed infinitely often.

This corollary enables us to prove the convergence of Dis-
tributed Stateless Learning for cooperative sequential stage
games:

Theorem 1. Let Γ be a cooperative sequential stage game
whose last cooperative common static game Gm is
played nm → ∞ times. Then DSL for Γ′ = T(Γ) converges
to an optimal joint strategy σ! of Gm, if each joint action
is visited infinitely often.

Proof. Since
∑m

j=0 nj → ∞ as nm → ∞ each joint
action is visited infinitely often. From Definition 7 of the
transformation function T, we obtain game G′

m, which is an
optimal joint strategy equivalent game of Gm according to
Lemma 2. From Lemma 3 and Definition 7 we know that
the reward for each joint action in G′

m is greater or equal to
the rewards obtained in all previous stage games played by
DSL on Γ′. Since this is a required condition for updating
the strategies, the convergence to an optimal joint strategy
σ! for G′

m follows from Corollary 1. As stated above, G′
m

and Gm are joint strategy equivalent games which finishes
this proof.

Informally spoken, in Theorem 2 we next show that our
algorithm converges to ε-optimal joint strategies for all stage
games contained in a (transformed) sequential stage game if
each stage game is played “often” enough.

Theorem 2. Let Γ′ = T(Γ) be the cooperative sequen-
tial stage game obtained from transformation of a cooper-
ative SSG Γ with m + 1 stage games. Then for all stage
games G′

j , 0 ≤ j ≤ m and ∀ε, δ > 0 there exists an nj(ε, δ) :
nj(ε, δ) < nj < ∞ such that DSL for Γ′ successively con-
verges to an ε-optimal joint strategy σ!

j for each stage game
G′

j with probability > 1 − δ if and only if G′
j is played nj

times.

Proof. From the application of T(Γ) we obtain Γ′ with
G = {〈G′

0, n0〉, 〈G′
1, n1〉, . . . , 〈G′

m, nm〉} having G′
0 = G0 as

the set of static games. By Lemma 3 it thus follows that all
rewards in G′

j are greater or equal to those of the previous
game G′

j−1. Accordingly, the algorithm is able to update the
q-values and the strategy if any optimal joint action in G′

j is
found, as the reward will be greater or equal than the local
q-value that emerged from previous games (cf. Algorithm
1, lines 9-12). Hence, it is sufficient to prove the above
proposition for an arbitrary but fixed game G′

j .
Let qιi(a) denote the local q-value for agent i and action

a ∈ Ai in iteration ι of the algorithm. In addition and
without loss of generality, let q!(j, a) be the optimal q-value
for a fixed stage game G′

j and action a.
Then, we have to show that for all ε, δ > 0 there exists

an nj(ε, δ) such that if nj > nj(ε, δ) (and nj < ∞) then
∀a ∈ Ai, ∀i ∈ A:

Pr(|qnj
i (a)− q!(j, a)| < ε) > 1− δ.

From [8], we know that the q-value update as performed
in line 10 of Algorithm 1 leads to monotonically increasing
q-values for bounded rewards ρi(a) ≥ 0, ∀a ∈ Ai, ∀i ∈ A.
Also from [8], we know that qιi(a) with probability 1 con-
verges to q!(j, a) as ι → ∞. Then, by these two arguments,
we can conclude the existence of an nj(ε, δ) that meets our
requirements.

From Theorem 2 and the optimal joint strategy equiva-
lence of the transformation function shown in Lemma 2, we
can conclude the following corollary:
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Corollary 2. DSL converges with probability > 1−δ to
ε-optimal joint strategies for each stage game of any coop-
erative sequential stage game Γ if played on the transformed
cooperative SSG Γ′ = T(Γ) and if each stage game is played
nj times with 0 < nj(ε, δ) < nj < ∞ as in Theorem 2.

In Section 5, experiments underline the results of the con-
vergence analyses of this section.

4.4 Complexity Results
Distributed Stateless Learning has the same runtime as or-

dinary single-agent Q-Learning, but requires the additional
effort of transforming the cooperative sequential stage games
using the transformation function T. Since determining the
maximum reward of a game requires time O(|U |) and each
reward is adjusted by t, the total runtime of t is in O(|U |).
Because the runtime of T is dominated by repeatedly ap-
plying transformation t on the stage games, the runtime for
transforming a sequential stage game with m stage games is
in O(m · |U |). Clearly, this additional computational effort
is not executed on the agents but part of a preprocessing in
order to generate the sequential stage game that should be
played.

As mentioned earlier, our distributed algorithm converges
towards optimal joint strategies in a subclass of stochas-
tic games, namely in sequential stage games. Therefore, it
requires only space O(|Ai|) on each agent i, where Ai is
the set of actions of that agent. Algorithms working on
the stochastic game ΓSG, that is obtained from a sequen-
tial stage game Γ as shown in Proposition 1, require more
space. For instance, Distributed Q-Learning needs space
O(|Ai|·|S|), as the complete q-table for each state-action pair
has to be stored. The space requirements are even higher
(i.e. O(|U | · |S|) for joint action learners which have to store
table entries for each joint action and state. In OAL (see
Section 2) the space requirements are further increased, as
for each state a virtual game has to be solved.

Please note that OAL and Distributed Q-Learning under
the same conditions as in Theorem 2, should also converge
to all optimal joint policies for the stochastic game ΓSG.
However, in both algorithms, the agents will go on storing
strategies for stage games that they won’t play again. This
does not happen in our approach, as strategies for previous
games are transformed into strategies for the current game.

Clearly, if a stage game occurs more than once, OAL and
Distributed Q-Learning might be enabled to benefit from the
(still) stored strategies, if the states can be mapped some-
how. However, our approach will be able to re-learn these
strategies without modifications as shown earlier. Another
advantage compared to OAL is that our approach does not
depend on the ability of observing joint actions, but works
on local actions, only.

5. EXPERIMENTAL RESULTS
At this stage, we implemented the algorithm and the trans-

formation function T and investigated an artificial alternat-
ing sequential stage game. The cooperative common static
games were chosen from the well known climbing game (CG)
and penalty game (PG) [3] and a mirrored penalty game
(MPG) as shown in Tables 1 – 3. For PG and MPG we use
k = −30. The alternating SSG repeatedly plays a sequence
starting with the climbing game, followed by the penalty
and the mirrored penalty game. In detail, the SSG uses the

Table 1: Climbing
game

aA1 aA2 aA3

aB1 11 -30 0
aB2 -30 7 6
aB3 0 0 5

Table 2: Penalty game
with k ≤ 0

aA1 aA2 aA3

aB1 10 0 k
aB2 0 2 0
aB3 k 0 10

Table 3: Mirrored penalty game with k ≤ 0

aA1 aA2 aA3

aB1 k 0 10
aB2 0 2 0
aB3 10 0 k

following game set G:

G = {〈CG0, n0〉, 〈PG1, n1〉, 〈MPG2, n2〉,
〈CG3, n3〉, 〈PG4, n4〉, 〈MPG5, n5〉,
〈CG6, n6〉, 〈PG7, n7〉, 〈MPG8, n8〉}

(13)

In all experiments we use ε-greedy action selection with
ε = 0.2 and a discount factor of β = 0.8. We set the num-
ber of repetitions of the last static game to n8 = 2000
in all experiments to ensure convergence to the optimal
joint strategy. For the first eight games, we used the same
number of repetitions in each experiment and choose nj ∈
{100, 200, 500, 2000}, 0 ≤ j ≤ 7, as these values are expected
to underline the theoretical results. Figure 2 shows the av-
erage results over 1000 repetitions of each experiment.

Figure 2: Likelihood of convergence towards optimal
joint strategies playing game MPG8 for n8 = 2000
and all other games for nj repetitions.

The results show an increasing likelihood for convergence
to optimal joint strategies the more often (nj) each static
game is played. Independently of how often the first eight
games are played, we observe a hundred percent likelihood
for convergence to an optimal joint strategy for the last
game. Accordingly, the results strongly underline Theorems
1 and 2. Note also, that our approach easily manages the
strong changes that occur when the SSG shifts from PG to
MPG, where previously optimal joint strategies become the
worst strategies and vice versa. The same also applies for
the other shifts, i.e. from CG to PG and from MPG to CG.
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At this point, we briefly want to pay attention to the
well known FMQ heuristic [6], which works well even in set-
tings with (partially) stochastic rewards where Distributed
Q-Learning fails [10]. In contrast to Distributed Q-Learning,
that is one base of our approach, FMQ without state-signal
in conjunction with the proposed transformation function is
unable to converge with probability 1 to (ε-)optimal joint
strategies for sequential stage games. Reasons for this in-
clude for instance the frequency heuristic itself, as the differ-
ent stage games may have different structures, or the game-
specific weight parameter (cf. Section 2).

6. DISCUSSION
In this work, we introduced sequential stage games (SSG),

which basically consist of a set of repeated games that are
played consecutively by the same agents. We provided an
approach that provably is able to converge to ε-optimal joint
strategies for each repeated game of any cooperative se-
quential stage game without the need for an explicit state
signal from the environment under two conditions. First,
the played SSG has to be obtained through the proposed
transformation function. Second, each stage game has to be
played “often” enough. We also proved the convergence of
the approach towards an optimal joint strategy for the last
stage game if played n → ∞ times.

Several advantages arise since the algorithm is able to
adapt to new situations, i.e. to new stage games, without
being directly notified about the transition to a new game
by an explicit state signal, but indirectly through engineered
rewards obtained from the transformation function. These
advantages include first of all the reduction of space require-
ments as only values for each agent action have to be stored
instead of values for each state-action pair as in most MARL
approaches. Secondly, it offers a huge potential for applica-
tion in complex dynamic problems where agents are unable
to detect a state change. Indirectly, the agents in such appli-
cations will learn about the game changes from different (en-
gineered) rewards. Examples for large and complex games
that change in a timely fashion include, for instance, eco-
nomic problems, distributed control problems, coordination
of robotic teams, or multi-objective optimization problems.
One example of the latter two types, the agent partitioning
problem [7], was presented in detail in the introduction.

For the future, we plan to investigate the application of
the proposed method onto that agent partitioning problem.
First results are promising but show the need for additional
coordination techniques to speed up convergence. Currently,
we are investigating the general potential of engineered re-
ward functions in stochastic games as a replacement for the
common mechanism that requires the environment to pro-
vide both, a state and a reward signal. Under some condi-
tions, also the application to non-cooperative games should
be investigated. Also the restriction to common stage games
with the same agents might be relaxed to allow varying num-
bers of agents for different games.
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ABSTRACT 

People spend much of their lives in the company of others. In 

future, it is likely that artificial agents and robots will also interact 

more closely with humans. This is particularly likely for agents or 

robots in the home, in entertainment applications or in service 

roles. As with interpersonal contact, human-computer contact may 

be as limited as mere coexistence, or it may be helpful, friendly or 

purely social in nature. Motivations and emotions play an 

important role in regulating these latter kinds of interactions 

between individuals. There is already a body of research 

concerned with the role of emotions in artificial agents. However, 

the role of internal motivation in such systems is less well studied. 

This paper considers how a number of interaction-related 

motivations, including curiosity, affiliation and power motivation, 

can be used to model adaptive social-forces in artificial agents. 

The social-force models are then analyzed in simulations to 

demonstrate how they can influence agents to approach or avoid 

the various concepts they experience in their environment.  

Categories and Subject Descriptors 

I.2 [Artificial Intelligence]: I.2.0 [General]: Cognitive 

simulation; I.2.11 [Distributed Artificial Intelligence]: 

Intelligent agents. 

General Terms 

Algorithms, Experimentation, Human Factors. 

Keywords 

Computational models of motivation, affiliation, power, curiosity, 

cognitive agents, adaptive robots. 

1. INTRODUCTION 
As intelligent agents become increasingly more complex and 

capable, they will be able to take on new roles that afford them 

increasing opportunities to interact with humans. A range of 

factors determine the effectiveness of human-computer 

interaction, including the appearance and expressiveness [1] of the 

interacting system, its context awareness and ability to understand 

the intentions of others, and its range of behavior.. Another 

emerging area of relevance to human-computer interaction is the 

study of self-motivated agents [2, 3]. Self-motivated agents are 

characterized by mechanisms for self-selection of goals, 

autonomous attention focus and adaptive learning. These 

mechanisms permit artificial agents to adapt to situations that 

were not foreseen by their designers by adapting their goal-sets 

and learning new behaviors in response to highly motivating 

environmental stimuli. Human-computer social interaction is a 

relevant application area for self-motivated agents because of the 

unpredictability of such interaction and the difficulties faced by 

system engineers trying to pre-determine all possible interaction 

scenarios. 

Psychologists have identified a number of motivational and 

emotional constructs that influence the way people interact. These 

include the affiliation motive, the intimacy motive, curiosity 

versus indifference, liking versus antipathy, dominance versus 

submission, the need for dependence versus autonomy and so on 

[4]. There is already a body of research concerned with the role of 

emotions in artificial agents [5-7]. However, the role of 

motivation in such systems is less well studied.  

This paper considers how a number of interaction-related 

motivations can be modeled computationally for use in artificial 

agents. Of particular interest is the use of motivations to model 

social-forces that cause agents to approach or avoid different 

goals or social situations. Social-force agents provide a simple yet 

versatile test-bed for the computational models of motivation 

presented in this paper, although the models themselves are 

generic enough that they could be used in other agent frameworks 

that can incorporate motivation or emotion [7-9]. The simulations 

in Section 4 compare the approach-avoidance response of agents 

with different embedded social-forces to the presentation of 

different concepts. Finally, Section 5 concludes with a discussion 

of the wider ranging implications of the work, including a brief 

description of two applications of the motivated social-force agent 

model, and future research directions inspired by the work. 

2. MOTIVATION AND SOCIAL FORCES 
Motivation can be defined as the ‘cause of action’ in natural 

systems [10, 11]. The determinants of motivation are both 

organism-specific, including individual needs, motives and goals, 

and situation-specific, including opportunities and incentives [4]. 

For this reason self-motivated individuals are characterized by 

different action tendencies even when in similar situations. 

Motivation can thus be a source of individual personality in 

artificial systems as well as enabling autonomous goal-selection 

and adaptability.  

Many theories of motivation have been proposed for natural 

systems, including biological, cognitive and social theories. A 

comprehensive review can be found in Motivation and Action by 
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Heckhausen and Heckhausen [4]. Likewise, a range of different 

types of computational motivation models have been developed 

for artificial systems. A review of these models can be found in 

Motivated Reinforcement Learning by Merrick and Maher [12]. A 

number of techniques have also been developed for combining 

multiple motives within uniform agent architectures. Biological, 

drive-based motivation theories, for example, have been 

developed as action-selection architectures [13]. Cognitive 

motivations such as interest and competence have been combined 

as reward signals in reward-based learning agents [2, 12]. This 

paper presents two models of motivated social-forces based on 

affiliation and power motivation, and an architecture for 

combining social motivations as social-forces, based on the 

concept of approach-avoidance motivation. 

2.1 Approach and Avoidance Motivation 
The distinction between approach and avoidance motivation is 

fundamental in the psychology of motivation [4]. Approach-

oriented individuals tend to select goals as states to be achieved 

by minimizing the difference between their current state and the 

goal state. Examples of approach motivation include a tendency to 

approach success or situations of high novelty, hope of affiliation 

and a desire to control the resources or rewards of others. In 

contrast, avoidance-oriented individuals tend to select goals as 

states to be avoided by maximizing the difference between their 

current state and the goal state.  Examples of avoidance 

motivation include a tendency to avoid failure, to avoid rejection 

by others, and to avoid exercising power over others. 

Approach and avoidance motivation are not only abstract concepts 

that help us understand motivation. Biopsychological models are 

able to identify specific regions of the brain responsible for 

approach and avoidance behaviors, including the behavioral 

activation system (BAS), flight-fight-freeze system (FFFS) and 

behavioral inhibition system (BIS) [14, 15]. The BAS is 

associated with the mesolimbic dopamine system and is involved 

in states of approach motivation and in active avoidance. The 

BAS responds to reward stimuli, safety-related stimuli and novel 

stimuli that may be rewarding. The FFFS is housed in a system 

consisting of the periaqueductal gray, medial hypothalamus and 

amygdala. The FFFS mediates avoidance behaviors and is 

activated by frustration stimuli, punishment stimuli and novel 

stimuli that may be dangerous. The BIS is identified with the 

septohippocampal system and resolves approach-avoidance 

conflicts when both the BAS and FFFS are activated equally 

strongly. 

In summary, the concepts of approach and avoidance are relevant 

to many motivation theories for natural systems. A number of 

existing motivation theories can be decomposed to identify 

approach and avoidance components. The following sections do 

this for curiosity, affiliation and power motivation.   

2.1.1 Curiosity 
Theories of curiosity fall under the heading of activation 

psychology. Activation is associated with electrical activity in the 

brain [16]. Conditions of activation range form sleep and 

sleepiness to high levels of excitation. These conditions have been 

found to accompany changes in performance proficiency on a 

variety of tasks, with intermediate levels of activation most 

conducive to performance [4]. Berlyne developed the most 

extensive theory of motivation based on the principals of 

activation and arousal [17, 18]. He determined that there is a U 

shaped relationship between arousal and activation. Low and high 

arousal potentials result in high levels of activation, are 

experienced as unpleasant, and trigger activities to reduce the 

level of activation. An intermediate arousal potential is optimal 

for an individual. Berlyne distinguished between states of high 

and low arousal, suggesting that high arousal results in focused 

(specific) exploratory behaviour while low arousal leads to 

diverse exploration or curiosity. 

Berlyne also distinguished between arousal levels and positive or 

negative hedonic (pleasure) values resulting in approach or 

avoidance tendencies to arousal. Once a certain threshold has been 

crossed, positive hedonic values builds to a peak as arousal 

potential increases. Any subsequent increase in arousal potential 

leads to a decline in hedonic value and eventually to increasing 

negative values. Two hypothetical partial curves represent 

approach and avoidance tendencies as positive and negative 

hedonic values.  If the arousal potential is too high, it will prompt 

“specific exploration” to obtain further information and relieve 

uncertainty. Berlyne called this perceptual curiosity. If arousal 

potential us too low it will prompt “diverse exploration” to seek 

out stimulation. This is exploration motivated by boredom.  

Berlyne sought to describe the determinants of arousal level in 

terms of various properties of sensed stimuli. He called these 

properties “collative variables”. Collative variables include 

novelty, uncertainty, complexity and surprise value. 

Computational models of arousal [19] and its collative variables, 

particularly novelty [20, 21], have been studied in some depth. 

For example, in one such model of novelty [20], an unsupervised 

learning algorithm such as a self-organizing map (SOM) is used to 

distinguish concepts. Concepts are represented as neurons in the 

SOM. A habituating neuron connected to each SOM neuron stores 

a novelty value N(t) that decreases with each occurrence of a 

concept and increases with each non-occurrence according to: 

!  = " [N(0) – N(t)] – # (t) 

 

(1) 

In Section 3 we adapt this basic approach to model power and 

affiliation motivation. We compare the motivational response of 

the new models to that of Marsland’s [20] model in simulations in 

Section 4. The remainder of this section introduces power and 

affiliation motivation.  

2.1.2 Power 
Power can be described as a domain-specific relationship between 

two individuals, characterized by the asymmetric distribution of 

social competence, access to resources or social status [4]. Power 

is manifested by unilateral behavioral control and can occur in a 

number of different ways. If there are two individuals, A and B:  

• Reward power is exerted if A can satisfy one of B’s motives 

and makes such satisfaction contingent on B’s behavior. 

• Coercive power is exerted if A can punish one of B’s 

behaviors by withdrawing B’s opportunity to satisfy certain 

motives, and makes punishment contingent on B’s behavior 

• Legitimate power is derived from norms internalized by B that 

tell B that A is authorized to regulate their behavior 

• Referent power arises from B’s desire to be like A 

• Expert power determined by extent to which B perceives A to 

have special knowledge or skills in a particular area 
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• Informational power is exerted when A communicates 

information to B that triggers B to change their beliefs and 

behavior 

Power motivation can also be thought of in approach and 

avoidance terms. Five components of fear of power have been 

identified: fear of the augmentation of one’s power source, fear of 

the loss of one’s power source, fear of exerting power, fear of the 

counter-power of others and fear of one’s power behavior failing. 

These inhibition tendencies moderate power by channeling the 

expression of power into socially acceptable behavior.  

Power motivation has a number of potential roles in future self-

motivated agents. In particular, it plays an important role in risk-

taking and setting a system, whether an individual or a society, 

into expansion mode. Risk-taking behavior is necessary both for 

establishing boundaries and identifying and exploiting high return 

situations. Power motivation also plays an important role in 

leadership. Studies of CEOs of large companies for example, have 

identified strong trends towards high power motivations in those 

individuals. This influences the way they delegate tasks and 

control feedback to their subordinates. 

Experimental evidence suggests that power motivation impacts 

goal selection by influencing the individual to choose high-

incentive (high-value) goals, regardless of the probability of 

success at achieving those goals. In other words, satisfaction of 

the power motive is strongest when an individual achieves a 

highly valued reward, thus denying the reward to others.  

2.1.3 Affiliation 
Affiliation refers to a class of fundamental social interactions that 

(1) seek contact with formerly unknown or little known 

individuals and (2) maintain contact with those individuals in a 

manner that both parties experience as satisfying, stimulating and 

enriching [4]. The need for affiliation is activated when one 

individual comes into contact with another unknown or little 

known individual. That is, the individual is motivated to affiliate.  

Affiliation motivation is thought to comprise two contrasting 

motivational components: hope of affiliation and fear of rejection. 

Hope of affiliation prompts us to approach unknown individuals 

and get to know them better. Fear of rejection urges caution and 

sensitivity in our dealings with strangers. When unfamiliar people 

interact, the hope component is activated first. Under the 

influence of affiliation motivation, contact is initiated. As 

familiarity with the person increases, the closer the relationship 

becomes and the more painful it would be if rejection occurred. 

The fear of rejection is activated and becomes increasingly strong. 

Sensitivity to relevant signals is heightened until the point of 

maximum conflict between approach and avoidance. When fear 

becomes dominant the closeness of the relationship is diminished 

until the fear motivation decreases and affiliation motivation 

dominates once again and the cycle begins anew. The maximum 

approach-avoidance conflict occurs at the point where both 

components are equally strongly aroused. Although the avoidance 

tendency is activated later the gradient of avoidance is steeper 

than the gradient of approach. 

Specific affiliation related goals include being in the company of 

others, cooperating, exchanging information and being friends. 

Individuals high in affiliation motivation may also be intent on 

effecting reconciliation with others, may make more suggestions 

to change the attitudes of others to bring those attitudes more into 

line with their own, avoid games of change and initiate fewer acts 

that might spark conflict. This can mean that they also initiate less 

cooperative acts. Individuals with medium to high affiliation 

motivation may be less deceptive and less risk-taking than those 

with low affiliation motivation. Heckhausen and Heckhausen [4] 

thus identify affiliation motivation as an important balance to 

power motivation. 

Affiliation motivation has at least two potential roles in artificial 

systems. First, it prompts agents to seek relationships with other 

agents or humans. The ability to proactively seek out, initiate and 

build relationships will be necessary in applications such as 

companion robots, or other types of entertainment robots. 

Secondly, the affiliation motivation can act as a balance to other 

motivations that focus activity on high risk activities, either 

inadvertently as in the case of curiosity, or purposefully as in the 

case of power motivation. 

2.2 Force-Based Social Models 
Force-based social models offer a simple yet versatile model in to 

connect sensations, motivations and actions. Social force models 

can be traced back to Reynold’s [22] flocking model. This model 

defines how individuals move in a flock to stay together while 

avoiding collisions with each other or obstacles. His model uses 

four forces: cohesion, alignment, separation and obstacle-

avoidance. Cohesion and alignment can be thought of as approach 

forces, while separation and obstacle-avoidance can be though of 

as avoidance forces.   

Saunders and Gero [21] proposed a different social-force model to 

simulate crowd behaviour as an approximation of the internal 

motivations an agent has to move in certain directions.  The 

social-forces used by Saunders and Gero [21] influence 

pedestrians to: 

• Maintain a comfortable distance from other pedestrians 

(avoidance force: similar to Reynold’s separation force), 

• Maintain a comfortable distance from obstacles (avoidance 

force: similar to Reynold’s obstacle-avoidance force), 

• Move towards other pedestrians or objects that are interesting 

(approach motivation),  

• Move as efficiently as possible to a destination (approach 

force). 

In Saunders and Gero’s work the attraction between pedestrians 

and other pedestrians or objects is modelled by curiosity. 

Curiosity is modelled in terms of novelty, and is highest for 

people or objects of moderate novelty. Their curious agents had 

six processes for (1) sensing the environment, (2) unsupervised 

learning of concepts, (3) computing the novelty of concepts, (4) 

calculating the interest of concepts, (5) planning and (6) acting. 

The next section adapts this model to produce a more general self-

motivated social-force agent. 

3. A SOCIAL-FORCE MODEL FOR SELF-

MOTIVATED AGENTS 
Our model for a self-motivated social-force agent is shown in 

Figure 1. The agent has four processes and an unsupervised 

learning module to represent long-term memory (LTM). The 

sensation process takes data from the agent’s sensors. Concepts 

are distinguished from sensor data by cluster-based unsupervised 

learning such as a self-organizing map (SOM) or adaptive 

resonance theory (ART) network or similar. Each concept is 
represented by a cluster in the network.  
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Motivated social-forces are then computed for each concept stored 

in LTM and forwarded to the decision process. The decision 

process combines the forces into a net social-force to control the 

agent’s action. The action process translates the social force into 
actuator commands. 

 

Figure 1. A self-motivated social-force agent. 

More formally, in this paper we will assume that agents are 

equipped with sensors that permit them to distinguish a set of 

properties SO = (s1, s2, s3…) describing the environment within 

their sensory radius.  Each time the agent senses its environment, 

the sensory properties will be matched with the most similar 

general concept already known by the agent. For example, if the 

agent is using a SOM to identify concepts, then concepts will be 

represented by neurons U = (u1, u2, u3…). The most similar 

concept will be computed as the winning neuron with the 
minimum Euclidean distance to the current sensed properties. 

The agent will then update its model of the current concept by 

adjusting the winning neuron in the direction of the sensed 
stimulus as follows: 

ui = ui + $1(si – ui)     for all i 

where $1 is the learning-rate of the SOM. Neighboring neurons 

topologically connected to the winning neuron may also be 
updated using a learning-rate $2 < $1 as in Marsland’s [20] model. 

Various approach and avoidance motivational forces F1, F2, F3… 

can then be computed for each concept and the net social-force F 

on the agent computed. The agent then focuses its attention on the 

concept with the highest social-force value and acts accordingly. 

Domain specific rules are used to associate actions with highly 

motivating concepts. For example, a surveillance agent with a 

camera may act on novel concepts by turning the camera to view 

the concept. This modifies the concept of rule-based agents where 

there is a fixed action response for a known sense state of the 

environment. In our model there is a fixed action response to 

known motivational states, but it does not need to be known in 

advance which environmental states may trigger such a 

motivational state. This permits the agent to adapt to unexpected 
environmental stimuli not foreseen by system engineers.   

Marsland’s model of novelty described in Section 2.1.1 is one 

example of a function that can be used to compute a novelty 

social-force FN online while an agent is learning about its 

environment. The following sections describe how this can be 
achieved for power and affiliation motivation. 

3.1 Power as a Social-Force 
As discussed in Section 2.1.2, when considering general goal 

selection, there is evidence to indicate that the strength of 

satisfaction of the power motive depends solely on the incentive 

value of the task. Individuals high in power motivation tend to 

favor high incentive goals as achieving those goals prevents 

others from attaining the associated high reward. This gives the 
power motivated individual control of the rewards of others.  

Merrick and Shafi [23] define power motivation P in terms of 

approach of high incentive goals, tempered by avoidance of very 
high incentive goals: 

P =  –  

 

(2) 

and define the turning point of the approach and 

inhibition components of power motivation respectively such that 

< .  and 
 
are the gradients of power and 

inhibition respectively.  Spow is a measure of strength of the power 

motivation relative to other motives. 

According to Equation 2, as the value (incentive) of a task 

increases approach to power motivation increases. At the same 

time, as incentive increases, inhibition of power (punishment for 

exerting control, fear of power etc.) also becomes large negative. 

The resultant tendency for power motivation is the sum of these 
approach and avoidance curves. 

Merrick and Shafi [23] focus on single-shot decision making 

agents and do not consider how incentive can be computed online 

by adaptive decision-making agents. In this paper we propose a 

model of incentive based on the frequency of stimuli. The logic 

behind this approach is that low-frequency, rare stimuli are more 

valuable to attain that high-frequency, common stimuli. Incentive 

is modeled by connecting an incentive neuron I to each SOM 

neuron. I stores a scalar value representing the incentive the 
concept U as follows: 

I(t) = [(t – 1)I(t–1) + # (t)] 

 

(3) 

I(0) = 0 is the initial incentive of all stimuli. # (t) = –1 if I is 

connected to the winning neuron and # (t) = 1 otherwise. The logic 

behind this is that the incentive of a stimulus drops the more 

frequently it occurs and rises if it does not occur for some time. 

By computing and updating an incentive value for each concept at 

each time-step, a power force FP can also be computed for each 
concept at each time-step using Equation 2. 

3.2 Affiliation as a Social-Force 
As discussed in Section 2.1.3, affiliation motivation is also 

thought to comprise two contrasting motivational components: 

hope of affiliation and fear of rejection. Hope of affiliation 

prompts us to approach unknown individuals and get to know 

them better. Fear of rejection urges caution and sensitivity in our 
dealings with strangers.  
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Merrick and Shafi [23]  also model affiliation A in terms of hope 

of affiliation and fear of rejection can be modeled as approach and 
avoidance sigmoid curves as follows:   

   A = –  

 

(4) 

and define the turning point of the hope and fear 

components of affiliation motivation respectively such that 

> . is the gradient of hope of affiliation and 
 

is the gradient of fear of rejection.  Saff is a measure of strength of 

the affiliation motivation relative to other motives. 

According to Equation 4, as the value (incentive) of a task 

increases, approach motivation increases. At the same time, as 

incentive increases, fear of rejection also becomes large negative. 

The resultant tendency for affiliation motivation is the sum of 

these approach and avoidance curves. Importantly, the values of 

and are lower than the values of and , 

meaning that the resultant tendency for affiliation motivation is 

maximal for goals or concepts of much lower incentive value. To 

extend this model to adaptive, online decision-making we again 

use the model of incentive proposed in Equation 3. By computing 

and updating an incentive value for each concept at each time-

step, an affiliation force FA can also be computed for each concept 
at each time-step using Equation 4.   

4. SIMULATING MOTIVATED SOCIAL-

FORCE AGENTS  
This section compares the difference between novelty and 

incentive and discusses the difference between curiosity, power 

and affiliation responses in four simulated scenarios. The four 

simulated sequences of concepts described below and depicted 

graphically in Figure 2 are used. These simulations are designed 

to describe generic demographic and social trends that might be 
conceptualized by a social agent. 

• Simulation 1: Two concepts occurring with equally high 

frequency. Real-world example of high-frequency 

occurrences might be the occurrence of people with brown or 
blonde hair. 

• Simulation 2: Two concepts occurring with equal, high 

frequency and one rarer concept. A real-world example might 

be found in concepts describing people’s jobs. A rarer concept 

might be a female computer scientist academic. 

• Simulation 3: Two concepts occurring with equal high 

frequency and three rarer concepts. A real-world example 

might be found in concepts describing people’s higher degree 

qualifications. Rarer concepts might describe people with 

several degrees or particularly unique combinations of 
degrees. 

• Simulation 4: Concept drift of one high-frequency and one 

low-frequency concept. This occurs when the definition of a 

concept changes over time. For example, the fashions people 
choose to wear change over time. 

 

 

Simulation 1: Two concepts occurring with equally high frequency. 

 

Simulation 2: Two concepts occurring with equal, high frequency 
and one rarer concept. 

 

Simulation 3: Two concepts occurring with equal high frequency 
and three very rare concepts 

 

Simulation 4: Concept drift of one high-frequency and one low-
frequency concept. 

Figure 2: Simulated concept sequences. These are assumed to 

be learned by a cluster-based unsupervised learning algorithm 

such as a SOM.  

The remainder of this section simulates the novelty and incentive 

“collative variables” and discusses the possible motivational 

responses to each of the four sequences of concepts described 

above, depending on whether an agent is embedded with novelty-

seeking, curiosity, affiliation or power motivation as its social 
forces.  

In a real application, the agent would sense its environment and 

use a SOM (or similar structure) to cluster its sensations online 

into concepts. In this simulation the concept sequences (neurons) 

that would be derived by an agent in a real application are 

generated by the simulator as per Figure 2. This permits us to 

compare the motivational responses of different social-force 

agents to known, identical concept sequences. Finally, in a real 

application multiple social-forces might be combined to create a 
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net social-force. However, in these simulations we consider 

novelty and incentive in isolation to understand the individual 
motivational responses to different stimuli sequences. 

4.1 Simulation 1: Two High Frequency 

Concepts 
This simulation (Figure 3(a)) shows how the novelty force is 

initially high but drops over time when the agent is repeatedly 

exposed to concepts. According to Berlyne’s theory this should 

cause the agent initially to avoid both concepts, then to approach 

both concepts as they become curious (moderate novelty) and 

finally to avoid both concepts once again. Depending on the 

application context, ‘avoidance’ may mean that the agent focuses 

its attention elsewhere, or that the agent engages in exploration to 

seek concepts of more appealing (moderate) novelty. ‘Approach’ 

may mean physically moving towards the source of the curious 

concept or otherwise focusing attention on the concept. This shift 

from avoidance to approach and back to avoidance is 

characteristic of self-motivated agents and demonstrates how they 
both learn about and adapt their behavior to concepts over time. 

The range of moderate novelty can be thought of as the range of 

approach to curiosity. This range may be different in different 

agents, controlled, for example, by a threshold value that 

determines which novelty values will motivate a curiosity 
response. Some possible responses are labeled in Figure 3(a).  

 

 

Figure 3. Simulation 1: (a) novelty and (b) incentive values 

calculated in response to two concepts occurring with equally 

high frequency.  

The incentive force also finds an equilibrium over time as shown 

in Figure 3(b). This is because the agent is repeatedly exposed to 

both concepts with approximately equal, high frequency over a 

long period. The agent thus interprets both concepts as relatively 

easily attainable and of only moderate incentive. Moderate 

incentive implies that the power social-force to pursue either 

concept will be low, as power motivation favors rare or high-risk 

concepts. Likewise, the affiliation social-force to pursue either 

concept will also be low as affiliation motivation favors very low-

incentive concepts that will not cause competition or conflict with 

other agents. This means that an agent motivated by either power 
or affiliation social-forces will avoid both concepts 

4.2 Simulation 2: Two Frequent and One 

Rare Concept 
In this simulation the novelty force also tends to drop over time, 

as shown in Figure 4(a), causing a similar sequence of adaptation 

as the concepts become less novel. In contrast to Simulation 1, 

however, ongoing small peaks in the novelty force curve are 

visible. This is because the novelty of the low-frequency concept 

drops more slowly. This should have the effect of focusing the 

agent’s attention on that concept over a slightly longer time period 

(up to t = 20 in this case). Over time, however, we can see that 

even the low-frequency concept loses its novelty. This will cause 
the agent to avoid that concept as well. 

In contrast to novelty, when a low-frequency concept is 

introduced, this concept registers as much more pronounced peaks 

in the incentive force, as shown in Figure 4(b). This concept 

would thus trigger a high power social-force response, causing the 

agent to focus its attention on that concept. Depending on the 

application context, a high power social-force might trigger to 

actions such as physically moving toward a resource, hoarding a 

resource or internally focusing attention on a particular goal 
associated with the highly motivating concept. 

 

 

 

Figure 4. Simulation 2: (a) novelty and (b) incentive values 

calculated in response to two concepts occurring with high-

frequency and one concept occurring with low frequency. 

4.3 Simulation 3: Two Frequent and Three 

Very Rare Concepts 
Figure 5(a) shows that even in the presence of more concepts the 

net novelty force drops rapidly over time. However, because the 

rarer concepts are now very low-frequency, the spikes in the 

novelty force curve indicating their occurrence are much higher. 

Unlike Simulations 1 and 2, in this simulation the low-frequency 

concepts maintain sufficiently high novelty to fall into the range 
of approach for curiosity for a much longer period (up to t = 60).  

Figure 5(b) also demonstrates that the very low-frequency 

concepts also cause a high incentive value. This means that they 

would trigger a high power social force. In an agent embedded 

with both social forces, both novelty and power would combine to 

motivate the agent to focus its attention on goals associated with 
these concepts. 

(a) 

(b) 

(a) 

(b) 

Avoid concept 

Approach concept (motivated by curiosity social-force) 
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Figure 5. Simulation 3: (a) novelty and (b) incentive values 

calculated in response to two concepts occurring with high-

frequency and three concepts occurring with very low 

frequency. 

4.4 Simulation 4: Concept Drift 
This simulation demonstrates that in the presence of concept drift, 

the concepts encountered the most still tend to be the least novel. 

In contrast to Simulation 1 where the low-frequency concept 

became progressively less novel over time, when concept drift 

occurs the changed concepts regain their novelty for a period. 
This is shown in Figure 6(a) at time t = 50. 

 

 

Figure 6. Simulation 4: Change in (a) novelty and (b) incentive 

in response to two drifting concepts. 

This simulation also demonstrates how repeated, high-frequency 

concepts can trigger a response motivated by the affiliation social-

force (Figure 6(b)). Unlike novelty, which habituates very 

quickly, incentive values for drifted concepts remains higher for a 

much longer period, regardless of their frequency. This can be 

seen in Figure 6(b) after t = 50. Drifted concepts must occur for 

increasing longer periods to fall into the range approach for 

affiliation motivation. In the fashion example, this mimics the 

idea that more variety can decrease the competitive social force 
for any one brand.  

5. ONGING WORK AND CONCLUSION  
Motivated social-force agents lend themselves to a range of varied 

applications. Two are discussed in Section 5.1 as examples or our 

ongoing work in this area, before we summarize and conclude in 
Section 5.2.  

5.1 Applications of Motivated Social-Force 

Agents 

5.1.1 Curious Social-Force Agents as Characters in 

a Game 
In our first application, depicted in Figure 7, curious social-force 

robots implemented on Lego Mindstorms NXT platform are the 

protagonists in a game. In this game the robots can move within 

the game area on the table. Human players must use the colored 

Duplo bricks to try to attract the attention of the robots. Robots 

will only move to towards colors they compute as highly 

interesting. The player who attracts the most robots or holds the 

attention of the robots for the longest time is the winner.  

Because this game permits humans to interact with the curious 

social-force robots it provides a human-robot interaction scenario 

in which we can potentially gather statistics on the human 

perspective of the embedded computational models of motivation. 
Such a study is planned for 2011. 

 

Figure 7. Curious social-force robots as protagonists in a 

game. 

5.1.2 Motivated Social-Force Agents for Network 

Anomaly Detection 
A second application area for this work is anomaly detection. 

Anomaly detection is relevant to various areas in computer 

security. In computer network administration, for example, 

network traffic must be monitored continuously and anomalies 

identified so that appropriate attack mitigation procedures can be 

carried out. Software agents are well suited to carry out such 

monitoring tasks as they can analyse large amounts of data 
autonomously and raise an alarm if an anomaly is identified.    

Curiosity or power motivated social-force agents have unique 

advantages for anomaly detection because they take into account 

the similarity, frequency and recency of sensed data. Highly novel 

or high incentive data indicates a potential anomaly. An alarm can 

then be raised to inform a human network administrator, or 
appropriate action taken automatically.  
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Preliminary simulations of the form in Section 4 suggest that for 

data that can be clustered with very low error, incentive values 

can identify the occurrence of anomalous concepts with 99% 

accuracy, even for anomaly rates of up to 25%. Early results from 
this ongoing work is available in [24]. 

The diversity of applications to which motivated agents can be 

applied shows the strength of these models. By using a domain-

independent model of motivation as the main reasoning 

mechanism, decisions about concepts can be made without 

requiring a domain specific representation of that concept. Only 
the actions taken as a response need be domain specific.  

5.2 Summary and Conclusions 
In summary, this paper has presented a motivated social-force 

agent model that permits approach-avoidance motivation to be 

embedded in artificial agents as adaptive social-forces. A model 

of incentive was also presented that permits the incentive of 

concepts to be computed and adapted online over time. This 

allows us to model power and affiliation motivation as social-

forces that can adapt an agent’s behavior in response to its 

changing conceptualization of its environment. Simulations of the 

incentive response were presented and discussed in comparison to 

novelty responses to different concept sequences. We conclude 
that: 

• Our incentive model is able to adapt to changing concepts 

presented over time. It should thus be appropriate for use in 

adaptive learning agents. 

• The power motivation response to incentive is particularly 

sensitive to low-frequency concepts and may be used to 

motivate action when the novelty response has long since 
habituated. 

Finally, we have started to embed our new models in a number of 

applications in entertainment robotics and anomaly detection. 

These applications will permit us to evaluate the performance of 

motivated social-force models in specific domains.  
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